π-Facial Selectivity in Nucleophilic Additions to 4,4-Disubstituted Dienones: Experimental Support for Electrostatic Control

Peter Wipf* and Yuntae Kim
Contribution from the Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

Received June 3, 1994^{*}

Abstract

The 4,4-disubstituted cyclohexadienones 5-10 and 32 were prepared by hypervalent iodine oxidation of the corresponding phenols. Our study of the facial selectivity in nucleophilic carbonyl additions provided experimental evidence for dominant dipolar control in these substrates. Hyperconjugative orbital stabilization in the transition state and orbital distortion effects appeared to be of secondary importance. Dienones $\mathbf{5 - 1 0}$ showed predominant attack of methyl Grignard reagents anti to the oxygen substituent at $\mathrm{C}(4)$ from the α-face of the dienone. In contrast, fluorinated substrate 32 demonstrated inverse selectivity, in accordance with an inversion of the molecular dipole moment μ_{\perp}. The structure of all addition products was unequivocally established on the basis of NMR, X-ray, and chemical correlations. Dipole moments were calculated with the AM1 MO method and compared to the experimentally observed facial selectivities. In a series of structurally closely related dienones, an excellent linear correlation of the logarithm of the facial selectivities vs the calculated dipole moments was observed. Facial selectivities were strongly dependent on the nature of the nucleophile. Hydride ions and alkynyl groups added essentially nonselectively, whereas sp^{2} - and sp^{3}-hybridized C -nucleophiles led to α / β ratios of $32: 1$ to $1: 5$.

Introduction

Since the conception of the Cram rule for the prediction of the facial selectivity of nucleophilic attack to a carbonyl group, ${ }^{1}$ numerous alternative models have been formulated as a consequence of a growing appreciation of steric and stereoelectronic effects in organic chemistry. ${ }^{2-5}$ It is indeed difficult

[^0]to overemphasize this problem, since the desymmetrization of the two faces of a planar carbonyl group is a fundamental paradigm of stereoselective synthesis. The influence of steric and conformational factors in kinetically controlled reactions is appropriately reflected by the Felkin-Ahn model, ${ }^{2 e . g}$ where

the transition state assumes a staggered arrangement with respect to the attacking nucleophile and the largest substituent is placed in an antiperiplanar position. Medium- and small-sized substituents at the α-carbon are at inside and outside positions, respectively. Donor ligands can modify this array via chelation to the reagent.
The spatial orientation of polar substituents with respect to the incoming nucleophile and the electronic control of face selection in carbonyl additions has been considerably more

[^1]controversial. ${ }^{5}$ Cornforth published an extension of the Cram rule for electronegative α-substituents in 1959. ${ }^{2 b}$ On the basis of STO-3G ab initio calculations. Ahn and Eisenstein proposed that the newly forming σ-orbital in the transition state would delocalize into an appropriate σ^{*}-orbital of a carbon-substituent bond. ${ }^{2 e}$ This hypothesis places electron-withdrawing groups with energetically low σ^{*}-orbitals preferentially into the antiperiplanar positions of the Felkin-Ahn model. In spite of substantial support of this concept in the literature, ${ }^{6}$ many alternative theoretical and computational models have been proposed. Cieplak argued that the transition state of nucleophilic attack of carbonyl groups is stabilized by hyperconjugative delocalization of the newly forming σ^{*}-orbitals into the σ-orbitals of antiperiplanar bonds. ${ }^{2 \mathrm{k}}$ This provides predictions for stereoselectivity that are often just the reverse of the AhnEisenstein model, even though the attempt was made to unify the two concepts. ${ }^{5 c}$ In an alternative approach, Klein and Burgess and Liotta pointed out the importance of desymmetrization of frontier orbitals by substituents. ${ }^{2 f, i}$ The differential change in the orbital coefficients on the two sides of the carbonyl plane causes an orbital distortion that directly induces facial selectivity. High-level ab initio calculations by Frenking have recently validated this concept for cyclohexanones. ${ }^{4 f, 7}$ In spite of this strong attention to frontier orbitals and hyperconjugative stabilization of the transition state, ${ }^{3}$ it seems clear that electrostatic effects should not be neglected, and Paddon-Row and Houk have reported MO calculations that indicate that electrostatic interactions may well outweigh Ahn-Eisenstein electronic effects. ${ }^{4}$ Additional theories have been discussed, and there is an increasing number of molecular mechanics, semiempirical, and $a b$ initio algorithms that are being applied toward the elusive goal of a general prediction of facial selectivities in carbonyl additions. ${ }^{2 g .1 .3 r, 5,4,5 \mathrm{sb}, 7}$ This bewildering array of theoretical models with sometimes controversial status adds, unfortunately, a highly empirical flavor to the analysis of experimental data.

In the course of our recent total synthesis of the antitumor antibiotic aranorosin, ${ }^{8}$ we observed an intriguing selectivity in the 1,2 -addition of organometallic reagents to 4,4-disubstituted dienones. Treatment of spirolactone 1 with ((benzyloxy)methyl)lithium provided the bis-allylic alcohols $2 \alpha, \beta$ in a $5: 1$ ratio in $>50 \%$ yield (eq 1).

Similarly, addition of a methyl Grignard reagent to $\mathbf{3}$ resulted in a 6:1 ratio of alcohols $4 \alpha, \beta$ (eq 2).

Molecular mechanics minimization of the geometry of dienones $\mathbf{1}$ and $\mathbf{3}$ revealed little steric bias for a face-selective

[^2]addition of organometallics. ${ }^{9}$ In fact, the observed attack mainly

from the α-face of the planar dienone seems to be sterically slightly more cumbersome syn to the $\mathrm{C}(4)$ methylene and $\mathrm{C}(3)$ amino groups vs the $O(1)$ lactone oxygen.

Due to the planar geometry, the relative distance of the para substituents of the dienone from the reaction center (approximately $4 \AA$), and the absence of charged, strongly haptophilic groups, steric and torsional effects as well as ligandassisted nucleophilic addition were likely to be of minor significance in the reactions of $\mathbf{1}$ and $\mathbf{3}$. Therefore, 4,4disubstituted dienones appeared ideally suited for the critical analysis of the various theoretical models for stereoelectronic control in carbonyl additions.

Results and Discussion

A. Experimental Results. The remote functionalization at the amino function of dienones $\mathbf{1}$ and $\mathbf{3}$ could possibly attenuate the impact of any electronic effects responsible for facial selectivity. We hoped that an investigation of nucleophilic addition to model dienones 5-10 would remove this bias and

create the structurally consistent experimental data set that is necessary for the discussion of general mechanistic models in organic chemistry.

Phenol oxidation with hypervalent iodine reagents provided a versatile entry to cyclohexadienones. ${ }^{10}$ Treatment of p-cresol (11) with $\mathrm{PhI}(\mathrm{OAc})_{2}{ }^{11}$ in MeOH afforded the desired 5 in 46\% yield (Scheme 1). Alternatively, oxidation in a tert-butyl alcohol/water mixture provided the 4-hydroxy dienone 9 in 61% yield. O-Silylation and -benzoylation with hexamethyldisilazane and benzoic acid/DCC coupling, respectively, resulted in 94 and 88% of 10 and 7. The spirocyclic dienones 6 and 8 were obtained by oxidative cyclization of (hydroxyphenyl)propanol 12 and the corresponding carboxylic acid 13 (Scheme 2). These efficient pathways to cyclohexadienones considerably facilitated
(9) The MM2 and AMBER parametrizations of MacroModel 3.5 were used. The calculated planar dienone geometry of 1 is supported by X-ray structural data of related cyclohexa-1,4-dienes with essentially planar geometries; the exact conformation of the ring in the solid state is controlled by crystal packing requirements: (a) Cheetham, A. K.; Grossel, M. C.; Newsam, J. M. J. Am. Chem. Soc. 1981, 103, 5363. (b) Jefford, C. W.; Bernardinelli, G.; McGoran, E. C. Helv. Chim. Acta 1984, 67, 1952. (c) Perry, N. B.; Blunt, J. W.; McCombs, J. D.; Munro, M. H. G. J. Org. Chem. 1986, 51, 5476. (d) Albertsson, J.; Oskarsson, A.; Svensson, C. Acta Crystallogr., Sect. B 1978, 34, 3027.
(10) (a) Tamura, Y.; Yakura, T.; Haruta, J.; Kita, Y. J. Org. Chem. 1987, 52, 3927. (b) Pelter, A.; Elgendy, S. Tetrahedron Lett. 1988, 29, 677. (c) Wipf, P.; Kim, Y. Tetrahedron Lett. 1992, 33, 5477.
(11) Moriarty, R. M.; Prakash, O. Acc. Chem. Res. 1986, 19, 244.

Scheme 1

Scheme 2

the subsequent determination of the facial selectivity of nucleophilic carbonyl additions. Due to the relative stability of the resulting methylated bis-allylic alcohols, we chose the addition of methylmagnesium bromide in THF at $-78^{\circ} \mathrm{C}$ as a standard reaction. Under these conditions, dienone 5 was rapidly converted in high yield into a $4.8: 1$ mixture of two diastereomers that were separated by chromatography on silica gel (Scheme 3).

In order to achieve an unambiguous structural assignment of the two diastereomers of 14 , each was subjected to a hydroxyldirected ${ }^{12}$ epoxidation in the presence of Kishi's ${ }^{13}$ radical inhibitor. Subsequently, O-methylation with sodium hydride and methyl iodide provided methyl ethers $15 \alpha, \beta$ in 58 and 67% overall yield, respectively. The $C_{2 v}$-symmetric major isomer 15α showed characteristically simple NMR spectra with three singlets in ${ }^{1} \mathrm{H}$ and four signals in ${ }^{13} \mathrm{C}$. The less symmetric $\left(C_{s}\right)$ minor isomer 15β displayed the expected combination of four singlets and two multiplets in ${ }^{1} \mathrm{H}$ NMR and eight signals in ${ }^{13} \mathrm{C}$ NMR. These symmetry considerations established an unequivocal preference for α-face attack on dienone 5 leading to C, C bond formation anti to the 4 -methoxy substituent, in agreement with our earlier results obtained with spirocyclic dienones 1 and 3.
If complexation of the Grignard reagent to the oxygen substituent at the 4 -position of dienone 5 had any influence on

[^3]
Scheme 3

Scheme 4

the stereochemical course of the nucleophilic addition to the remote carbonyl group, then such an effect would be expected to be more pronounced in alcohol 9 and significantly less effective in silyl ether $10 .{ }^{14}$ Treatment of 10 with methylmag. nesium bromide in THF led, however, to a considerable increase in the facial selectivity, and a 17.7:1 ratio of $16 \alpha, \beta$ was isolated in 93% yield (Scheme 4). After separation, the major isomer was deprotected to give diol 17α. The tentative structural assignment of 16α was validated by subsequent diepoxidation and O-methylation of 17α to give the $C_{2 v}$-symmetric 15α. In contrast, treatment of alcohol 9 with an excess of Grignard reagent resulted in a reduced α / β selectivity of 7.9:1, as determined by integration of a mixture of 17α and 18β in ${ }^{13} \mathrm{C}$ NMR (Scheme 5). As expected, ${ }^{14,15}$ alkoxide-directed conjugate addition provided enone 19 as the predominant reaction product (58%) in this process. The combined yield for 1,2 -addition to the carbonyl group amounted to 26%, and the major isomer was spectroscopically identical to diol 17α prepared by desilylation of 16α. Additionally, the spectroscopic data for 17α and 18β were identical to literature values. ${ }^{16}$

[^4]
Scheme 5

Scheme 6

Somewhat surprisingly, conjugate addition was also the major reaction product for the spirocyclic ether 6 in the presence of methylmagnesium bromide (Scheme 6). Enone 21 was isolated in 42% yield in addition to an inseparable $8.6: 1$ mixture of $20 \alpha, \beta$. This mixture was epoxidized with MCPBA, and on the basis of the NOE effect between methylene and methyl groups in 22α, the major isomer of the 1,2 -addition pathway was identified as the α-addition product.

Due to the conformational flexibility of 21, spectroscopic analysis did not allow for an unambiguous assignment of the relative stereochemistry at the methine carbon. The stereochemistry of the conjugate addition product 21 was determined as shown in Scheme 6 by conversion to the saturated derivative 23 and analysis of the vicinal coupling constant of the axial α-proton $(J=12.2 \mathrm{~Hz}) .{ }^{17}$ The haptophilic effect of the tetrahydrofuran ring oxygen in 6 is therefore comparable to that of the alkoxide ligand in the Grignard addition to 9 and far superior to that of the methyl ether in 5 . This chelation skews the nucleophilic attack of the Grignard reagent toward conjugate addition from the β-face of the enone.

Treatment of 4 -benzoyl dienone 7 with methylmagnesium bromide led to approximately 60% of a $>8: 1$ mixture of allylic alcohols $24 \alpha, \beta$, as determined by integration of the crude ${ }^{1} \mathrm{H}$ NMR (Scheme 7). Due to the instability of these addition products, the crude mixture was directly subjected to an excess of LiAlH_{4} in THF to give the previously characterized diols 17α and 18β in a 10.1:1 ratio.

The spirocyclic analog of benzoate 7 , lactone 8 , provided the highest α-face selectivity observed thus far in this study. Allylic alcohols $25 \alpha, \beta$ were detected in a ratio of $32: 1$ by NMR analysis of the crude reaction mixture after the Grignard reaction (Scheme 8). The major isomer decomposed more rapidly during further purification and chromatography, and a $23: 1$ ratio of $\mathbf{2 5} \alpha, \beta$ was isolated in 57% yield. Epoxidation was performed

[^5]
Scheme 7

Scheme 8

Figure 1.
on the mixture of diastereomers, and the major compound 26α was crystallized and its structure unambiguously established by X -ray analysis (Figure 1).

In order to expand the scope of our investigation of the facial selectivity in nucleophilic addition to cyclohexadienones, we also studied the course of reaction with hydride reagents, organolithium compounds, and sp^{2-} as well as sp -hybridized C-nucleophiles. In contrast to the addition of alkyl Grignard reagents, reduction of 5 with various hydride sources did not occur selectively and 1:1 mixtures of secondary alcohols $27 \alpha, \beta$ were isolated (Scheme 9). Similarly, ethynylmagnesium bromide as well as hexynyllithium reacted without stereocontrol (Scheme 10).

Phenylmagnesium bromide, an example of an sp^{2}-hybridized carbon nucleophile added to dienone 5 predominantly from the α-face and in lower selectivity than the methyl Grignard reagent

Scheme 9

Scheme 10

Scheme 11

Scheme 12

(Scheme 11). A slight drop in stereoselectivity versus this standard was also observed when alkyllithium reagents were employed (Scheme 12). In contrast, a change in solvent from THF to the less polar $\mathrm{Et}_{2} \mathrm{O}$ led to an improved α / β ratio.

These results, especially the lack of selective addition observed with reducing agents and sp-hybridized carbon nucleophiles, clearly illustrate the high sensitivity of the stereoselectivity of the 1,2 -addition process toward the solvent medium, the electronic structure, and accordingly, the state of aggregation of the nucleophile. However, all variations of reaction parameters only led to an erosion of α-diastereoselectivity, and in no case were we able to observe a change in the facial selectivity toward an excess of β-attack. The results of this first phase of our experimental studies on 4,4-disubstituted dienones are summarized in Table 1.

Theoretical Model and Experimental Proof of Principle. We had initiated this study on the basis of the experimentally observed selectivity of aranorosin intermediate 1 to undergo

Table 1. Facial Selectivity in Nucleophilic Additions to Dienones

entry	dienone	nucleophile	product (\% yield)	α / β selectivity
1	1	$\mathrm{BnOCH}_{2} \mathrm{Li}$	2 (>50)	5:1
2	3	MeMgBr	4 (84)	6:1
3	5	MeMgBr	14 (86)	4.8:1
4	5	NaBH_{4} or LiAlH_{4}	27 (100)	1:1
5	5	$\mathrm{HC} \equiv \mathrm{CMgBr}$	28 (70)	1:1
6	5	$\mathrm{H}_{9} \mathrm{C}_{4} \mathrm{C} \equiv \mathrm{CLi}$	29 (26)	1.1:1
7	5	PhMgBr	30 (83)	3.6:1
8	5	MeLi/THF	14 (87)	2.1:1
9	5	$\mathrm{MeLi/Et} \mathrm{t}_{2} \mathrm{O}$	14 (77)	3.3:1
10	5	$\mathrm{BnOCH}_{2} \mathrm{Li}$	31 (84)	3:1
11	6	MeMgBr	20 (75)	8.6:1
12	7	MeMgBr	24 (>61)	10.1:1
13	8	MeMgBr	25 (79)	32:1
14	9	MeMgBr	17/18 (81)	7.9:1
15	10	MeMgBr	16 (93)	17.7:1

Figure 2. Qualitative order of dipole moments of dienones. The experimentally observed α-selectivity decreases from left to right.
nucleophilic attack of an α-alkoxy organolithium reagent preferentially from the α-face of the dienone opposite the 4 -alkoxy substituent. The data outlined in Table 1 confirmed that this represented indeed a general trend for 4,4-disubstituted cyclohexadienones. We were intrigued by the great variation of selectivity as a function of seemingly subtle changes at the 4-position, e.g. methyl ether 5 compared to spiroether 6 or benzoate 7 compared to spirolactone 8 . Whereas the AhnEisenstein argumentation ${ }^{2 g}$ of transition state stabilization by σ $\rightarrow \sigma^{*}$ interaction of the newly forming σ-bond with the σ^{*} of the electronegative substituent accounted for the general increase in selectivity from 4-alkoxy to 4-acyloxy dienones, this theory did not easily lend itself to an explanation of the significant differences between monocyclic and spirocyclic systems or the high selectivity of the 4 -silyloxy dienone $\mathbf{1 0}$. Similar problems arose in the consideration of a "vinylogous Cieplak effect", e.g. the stabilization of the transition state by hyperconjugation of the newly forming σ^{*}-bond by the σ-orbital of the 4 -alkyl substituent via a $\sigma-\pi^{*}-\sigma^{*}$ interaction. ${ }^{18}$ Application of the principle of frontier orbital distortion as described by Burgess and Liotta ${ }^{2 \mathrm{i}, 3 \mathrm{c}}$ would lead to an (experimentally incorrect) prediction for β-selectivity. Therefore, we considered more closely the possibility of an electrostatic control mechanism in these dienone additions. Qualitatively, there appeared to be a reasonable correlation of the observed α-selectivity with the expected dipole moment of dienones 5-10 (Figure 2).

It is clear, however, that caution must be exercised in the qualitative use of a ground state parameter such as the molecular dipole moment in the explanation of kinetic selectivity. We argued that an appropriate test of the role of electrostatic control in the observed facial selectivity was the design of a substrate with an inverted dipole moment opposite the carbon-oxygen bond. In pentafluoroethyl dienone 32, for example, electrostatic

[^6]Scheme 13

control should now lead to preferential β-face attack, whereas hyperconjugative transition state stabilization would still induce α-selectivity.

The synthesis of dienone $\mathbf{3 2}$ is shown in Scheme 13. Oxidation of p-methoxyphenol 33 in butanol provided mixed acetal 34 in 76% yield. Addition of (pentafluoroethyl)lithium ${ }^{19}$ in ether resulted in 81% of the fluorinated alcohol 35 which was O-methylated and hydrolyzed to give the desired 32 .

Treatment of dienone $\mathbf{3 2}$ with methyllithium in THF led to a 1:5 mixture of diastereomeric alcohols 36 in 72% yield (Scheme 14). Indeed, as predicted by the electrostatic effect, the β-face addition product $\mathbf{3 6} \beta$ was isolated as the major product. The two isomers were correlated chemically to a $3: 1$ mixture of addition products of (pentafluoroethyl)lithium to dienone 10, which was previously shown to undergo preferential α-attack. Additionally, the α-isomer was identified spectroscopically by a long-range NOE effect upon O-benzylation of $\mathbf{3 6}$ (Scheme 14).

The unique β-selectivity observed with the 4 -fluoroalkylsubstituted dienone 32 represents clearly a significant support for dipolar control in these kinetically controlled nucleophilic additions. The importance of electric fields imposed by ionic groups or salts on the substrate reactivity is evident in enzymes and can also be used for specific rate acceleration in organic transformations. ${ }^{20}$ However, our experimentally uniform studies with structurally closely related dienone substrates allowed us to address an additional intriguing question: Can the dipole moment be used for a quantitative prediction of facial selectivities? The electrostatic field of the substrate exercises a torque on any approaching reagent dipole and vice versa. The torque on the dipole is zero only when it is aligned with the electric field, and its potential energy is directly proportional to the dipole moment. ${ }^{21}$ Accordingly, the dipole moment and possibly also the electrostatic potential at the site of attack should correlate linearly with the energy of activation of the addition

[^7]Scheme 14

process and the logarithm of the facial selectivity. This correlation would be analogous to a Hammett free-energy relationship. ${ }^{22}$ However, in a series of 4,4-disubstituted dienones, only substrates with functional groups that are positioned in close vicinity to the dienone chromophore could be expected to lend themselves to a good quantitative correlation of facial selectivities with overall dipole moments. Our dienones 5, 6, and $\mathbf{8}$ fulfill this requirement, whereas 3,7 , and 10 appear too remotely functionalized and also sterically too hindered at the β-face. The introduction of functional groups that are in greater spatial separation from the center of reaction should have a diminishing electrostatic directing effect on the carbonyl addition but still contribute evenly to a change in the overall dipole moment.

We calculated the dipole moments of dienones $\mathbf{5}, \mathbf{6}$, and $\mathbf{8}$ with the semiempirical AM1 parameter set ${ }^{23}$ on the SPARTAN ${ }^{24}$ computational interface. ${ }^{25}$ Optimized starting geometries were obtained from the MM2 and Sybyl force fields implemented in SPARTAN. The vector components of the calculated dipole moments orthogonal to the plane of the dienones $\left(\mu_{\perp}\right)$ were correlated to the natural logarithm of the observed facial selectivities and linearly extrapolated. Upon the basis of this extrapolation and the calculated dipole moment of dienone 32, the experimentally observed selectivity for nucleophilic attack of the fluorinated substrate $\mathbf{3 2}$ was indeed very closely matched

[^8]

Figure 3. Least squares linear regression correlation of calculated dipole moments of dienones $5,6,8$, and 32 vs the logarithm of the experimentally observed facial selectivities in the nucleophilic carbonyl addition. The values of the components of the dipole moments orthogonal to the dienone plane (μ_{\perp}) are given in debye [D]. Correlation coefficient $R=0.998$.
(Figure 3). ${ }^{26}$ The considerably more computer time intensive $a b$ initio calculations of dienones $5,6,8$, and 32 with the $6.31 \mathrm{G}^{*}$ and $6.31 \mathrm{G}^{* *}$ basis sets gave dipole moments μ_{\perp} within 10% of the AM1 values and identical graphical displays. To the best of our knowledge, this is the first example of a quantitative correlation between dipole moments and kinetic selectivities. The excellent linearity stresses the importance of electrostatic control in polar addition reactions to sterically unhindered carbonyl groups, even though the limited data set does not yet allow an unambigous generalization of this concept. ${ }^{27}$ Further work with dienones and related substrates for nucleophilic additions will clarify if the present results reflect only a fortuitous cancellation of errors or indeed provide us with some insight into the early interactions in the transition states for polar addition reactions.

It is interesting to note that Figure 3 predicts an intrinsic selectivity for dienone additions even with μ_{\perp} equal zero. Quite possibly, this could be interpreted as a hyperconjugative effect of the $\mathrm{C}(4)$-oxygen bond independent of electrostatic control. Also, we expect that both the ordinate intercept and the slope of the plot are a function of the heteroatom at $\mathrm{C}(4)$ and the nucleophile and could be useful for a classification of substituents and reagents. We plan to test this hypothesis in our future studies.

Conclusion

Our investigation of the facial selectivity of nucleophilic attack of 4,4 -disubstituted dienones provides experimental evidence for dominant dipolar control in these carbonyl addition reactions. Hyperconjugative orbital stabilization in the Felkin-Ahn-Cieplak sense and orbital distortion effects appear to be of secondary importance. The excellent linear correlation of calculated dipole moments vs the logarithm of the facial selectivity supports the notion that, in the absence of steric hindrance, the kinetic selectivity of irreversible C,C-bond

[^9]formation is strongly influenced by dipole-dipole interactions between reagent and substrate. Due to the distance equivalency of the substituents to the reaction center and the absence of steric and torsional effects, 4,4-disubstituted dienones can serve as powerful test cases for the study of stereoelectronic and electrostatic models.

Experimental Section

General Methods. IR spectra were recorded on a IBM IR/32 spectrophotometer. NMR spectra were recorded on Bruker AM-500 or $\mathrm{AM}-300$ spectrometers in CDCl_{3} unless otherwise noted. Mass spectra were obtained on a VG-70-70 HF. Anhydrous solvents were freshly distilled from either sodium benzophenone ketyl, $\mathrm{P}_{2} \mathrm{O}_{5}$, or CaH_{2}. All reactions were performed in oven-dried glassware under an argon or nitrogen atmosphere. Analytical TLC used Merck silica gel 60 F-254 plates, and flash chromatography was used to separate and purify the crude reaction mixtures.

4-Methoxy-4-methyl-2,5-cyclohexadienone (5). To a solution of $5.0 \mathrm{~g}(46.3 \mathrm{mmol})$ of p-cresol ($\mathbf{1 1}$) in 100 mL of dry $\mathrm{CH}_{3} \mathrm{OH}$ was added at $0{ }^{\circ} \mathrm{C} 16.7 \mathrm{~g}(50.9 \mathrm{mmol})$ of (diacetoxyiodo)benzene. The reaction mixture was stirred for 30 min at $21^{\circ} \mathrm{C}$, diluted with EtOAc, washed with saturated aqueous NaHCO_{3} solution ($2 \times 40 \mathrm{~mL}$) and brine, and dried $\left(\mathrm{MgSO}_{4}\right)$. Filtration and evaporation gave a dark brown residue which was chromatographed on silica gel (hexane/EtOAc, 2:1) to give 4.2 g of a deep yellow solid. The crude product was dissolved in 100 mL of hexanes, cooled to $-78^{\circ} \mathrm{C}$, and filtered to give $2.94 \mathrm{~g}(46 \%)$ of 5 as a white solid: $R_{f}($ EtOAc/hexanes, $1: 1)=0.6 ; \mathrm{mp} 53-54^{\circ} \mathrm{C}$; IR (neat) 2973, 1705, 1673, 1628, 1607, 1466, 1455, 1395, 1302, 1248, 1088, 1042, 868, 733, $696 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 6.74$ (d, $2 \mathrm{H}, J=10.2$ $\mathrm{Hz}), 6.27\left(\mathrm{~d}, 2 \mathrm{H}, J=10.2 \mathrm{~Hz}\right.$), $3.16(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 185.2,151.8,130.5,72.7,53.3,26.3 ;$ MS (EI) m / e (relative intensity) $138\left(\mathrm{M}^{+}, 50\right), 123(100), 110(40), 107(40), 95(35), 77(40), 67(15)$, 63 (8), 51 (15), 43 (11), 39 (12); HRMS (EI) m/e calcd for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{2}$ 138.0681, found 138.0698 .

1-Oxaspiro[4.5]deca-6,9-diene-8-one (6). To a solution of 100 g (0.6 mmol) of 3-(4-hydroxyphenyl)propanol (12) in 5 mL of EtOAc at $21^{\circ} \mathrm{C}$ was added $240 \mathrm{mg}(0.72 \mathrm{mmol})$ of (diacetoxyiodo)benzene. The reaction mixture was stirred for 30 min , diluted with EtOAc , and washed with saturated aqueous NaHCO_{3} solution and brine. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and evaporated to give a dark brown residue which was chromatographed on silica gel (hexane/EtOAc, 1:1) to give 38 mg (39%) of 6 as a colorless liquid: R_{f} (EtOAc/hexanes, $1: 1)=0.5$; IR 2977, 1669, 1630, 1397, 1250, 1084, 1036, 963, 924, $855 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 6.74(\mathrm{~d}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz}), 6.03(\mathrm{~d}, 2 \mathrm{H}, J=$ $10.0 \mathrm{~Hz}), 3.98(\mathrm{t}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}), 2.1-2.0(\mathrm{~m}, 2 \mathrm{H}), 2.0-1.9(\mathrm{~m}, 2$ H); ${ }^{13} \mathrm{C}$ NMR δ 185.4, 149.8, 126.9, 69.1, 36.7, 26.7; MS (EI) m / e (relative intensity) $150\left(\mathrm{M}^{+}, 8\right), 135(1), 122(4), 74(20), 59(30), 45$ (30), 40 (100); HRMS (EI) m/e calcd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2}$ 150.0680, found 150.0678.

4-(Benzoyloxy)-4-methyl-2,5-cyclohexadienone (7). To a solution of $120 \mathrm{mg}(0.98 \mathrm{mmol})$ of alcohol 9 in 2.5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added successively at $21^{\circ} \mathrm{C} 180 \mathrm{mg}(1.47 \mathrm{mmol})$ of benzoic acid, 303 mg (1.47 mmol) of DCC, and $1.2 \mathrm{mg}(0.01 \mathrm{mmol})$ of DMAP. The resulting suspension was stirred for 16 h at $21^{\circ} \mathrm{C}$, diluted with EtOAc, and washed with $\mathrm{H}_{2} \mathrm{O}$ and brine. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and evaporated to give a colorless residue which was chromatographed on silica gel (EtOAc/hexane, 2:1) to give 196 mg (88%) of 7 as a white solid: R_{f} (EtOAc/hexanes, 1:1) $=0.6 ; \mathrm{mp} 84-$ $85{ }^{\circ} \mathrm{C}$; \mathbb{R} (neat) $2930,1715,1673,1632,1574,1557,1538,1532$, 1505, 1453, 1393, 1277, 1177, 1103, 1053, 1026, 860, 712, $666 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.99(\mathrm{~d}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}), 7.58-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.38$ (m, 2 H), 6.97 (dd, $2 \mathrm{H}, J=12.0,3.1 \mathrm{~Hz}$), $6.27(\mathrm{dd}, 2 \mathrm{H}, J=12.0,3.0$ $\mathrm{Hz}), 1.68(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 185.0,165.0,149.3,133.4,129.7,129.5$, 128.5, 128.2, 74.6, 26.4; MS (CI) m/e (relative intensity) 229 ([M + $1]^{+}, 100$), 123 (20), 105 (95).

1-Oxaspiro[4.5]deca-6,9-diene-2,8-dione (8). To a solution of 1.0 $\mathrm{g}(6.02 \mathrm{mmol})$ of 3-(4-hydroxyphenyl)propionic acid (13) in 15 mL of dry $\mathrm{CH}_{3} \mathrm{OH}$ was added at $21^{\circ} \mathrm{C} 2.2 \mathrm{~g}(6.62 \mathrm{mmol})$ of (diacetoxyiodo)benzene. The reaction mixture was stirred for 30 min , diluted with EtOAc, washed with saturated aqueous NaHCO_{3} solution and brine, and dried $\left(\mathrm{MgSO}_{4}\right)$. Filtration and evaporation gave a dark brown
residue which was chromatographed on silica gel (hexane/EtOAc, 1:1) to give $622 \mathrm{mg}(63 \%)$ of $\mathbf{8}$ as a white solid: R_{f} (EtOAc/hexanes, $1: 1$) $=0.4 ; \mathrm{mp} 110^{\circ} \mathrm{C}$; \mathbb{R} (neat) 2973, 2872, 1692, 1667, 1628, 1395 , 1248, 1084, 1036, $963,922,855 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 6.85(\mathrm{~d}, 2 \mathrm{H}, J=$ $10.1 \mathrm{~Hz}), 6.28(\mathrm{~d}, 2 \mathrm{H}, J=10.1 \mathrm{~Hz}), 2.78(\mathrm{t}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}), 2.37$ (t, $2 \mathrm{H}, J=8.3 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR δ 184.1, 175.2, 145.6, 129.3, 78.4 , 32.4, 28.0; MS (EI) m / e (relative intensity) 164 ($\mathrm{M}^{+}, 80$), 136 (25), 122 (40), 110 (20), 91 (53), 82 (30), 68 (10), 65 (20), 63 (20), 55 (100), 52 (20), 50 (12), 43 (13); HRMS (EI) calcd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{3}$ 164.0478, found 164.0478 .

4-Hydroxy-4-methyl-2,5-cyclohexadienone (9). To a solution of $200 \mathrm{~g}(1.85 \mathrm{mmol})$ of p-cresol (11) in 10 mL of t-BuOH and 5 mL of $\mathrm{H}_{2} \mathrm{O}$ was added at $0{ }^{\circ} \mathrm{C} 670 \mathrm{~g}(2.0 \mathrm{mmol})$ of (diacetoxyiodo)benzene. The reaction mixture was stirred for 30 min at $21^{\circ} \mathrm{C}$ and partitioned between EtOAc and saturated aqueous NaHCO_{3} solution. The organic layer was washed with brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Filtration and evaporation gave a dark brown residue which was chromatographed on silica gel (hexane/EtOAc, 1:2) to give $134 \mathrm{mg}(61 \%)$ of 9 as a viscous oil: R_{f} (EtOAc/hexanes, 2:1) $=0.3$; \mathbb{R} (neat) $3393,2980,1669$, 1651, 1622, 1397, 1092, 1065, $860 \mathrm{~cm}^{-1}$; ${ }^{1}$ H NMR $\delta 6.83$ (dd, $2 \mathrm{H}, \mathrm{J}$ $=8.4,1.6 \mathrm{~Hz}), 5.98(\mathrm{dd}, 2 \mathrm{H}, J=8.4,1.8 \mathrm{~Hz}), 3.95(\mathrm{~s}, 1 \mathrm{H}), 1.39(\mathrm{~s}$, 3 H); ${ }^{13} \mathrm{C}$ NMR δ 186.0, 153.1, 126.6, 66.9, 26.7; MS (EI) m/e (relative intensity) $124\left(\mathrm{M}^{+}, 35\right), 109(100), 96(35), 81(55), 77(14), 69(10)$, 55 (20), 51 (10), 43 (20); HRMS (EI) calcd for $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}_{2} 124.0524$, found 124.0530.

4-Methyl-4-((trimethylsilyl)oxy)-2,5-cyclohexadienone (10). To a solution of 108 mg (0.87 mmol) of alcohol 9 in 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added successively at $21^{\circ} \mathrm{C} 178 \mathrm{mg}(2.61 \mathrm{mmol})$ of imidazole, $210 \mathrm{mg}(1.3 \mathrm{mmol})$ of hexamethyldisilazane, and $10 \mathrm{mg}(0.09 \mathrm{mmol})$ of TMSCl. The resulting suspension was stirred for 6 h , diluted with hexanes, and washed with water and brine. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and evaporated to give a colorless residue which was chromatographed on silica gel (hexane/EtOAc, 4:1) to give $159 \mathrm{mg}(94 \%)$ of $\mathbf{1 0}$ as a white solid: $R_{f}($ EtOAc/hexanes, $1: 1)=0.8$; $\mathrm{mp} 66-67^{\circ} \mathrm{C}$; \mathbb{R} (neat) $2980,1663,1626,1601,1391,1302,1252$, 1183, 1130, 1086, $938,841,762 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 6.88$ (d, $2 \mathrm{H}, J=$ $10.1, \mathrm{~Hz}), 6.13(\mathrm{~d}, 2 \mathrm{H}, J=10.1 \mathrm{~Hz}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ 185.6, 153.6, 126.9, 69.7, 29.7, 2.1; MS (EI) m/e (relative intensity) $180(1), 149(2.5), 124\left(\left[\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{Si}^{+}, 40\right), 109(100), 96\right.$ (60), 81 (70), 77 (20), 68 (20), 53 (30), 43 (40); HRMS (EI) calcd for $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}_{2}$ (M $-\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{Si}$) 124.0524, found 124.0508.
syn-4-Methoxy-1,4-dimethyl-2,5-cyclohexadienol (14 α) and anti-4-Methoxy-1,4-dimethyl-2,5-cyclohexadienol (14ק). A solution of $5(100 \mathrm{mg}, 0.73 \mathrm{mmol})$ in 8 mL of dry THF was treated for 10 min at $-78{ }^{\circ} \mathrm{C}$ with $3 \mathrm{~mL}(4.5 \mathrm{mmol})$ of $\mathrm{CH}_{3} \mathrm{MgBr}(1.5 \mathrm{M}$ solution in THF/ toluene, 1:3). After 30 min , the reaction mixture was quenched with a 5% aqueous NaHCO_{3} solution and extracted with EtOAc. The organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo to give a colorless oil. Chromatography on silica gel (EtOAc/ hexanes, $1: 3$) yielded 78 mg (70%) of 14α as a colorless liquid and 18 $\mathrm{mg}(16 \%)$ of 14β as a white solid. 14α : $R_{f}($ EtOAc/hexanes, $1: 1)=$ 0.35 ; IR (neat) $3395,3023,2975,2930,1399,1366,1136,1071,941$, $783 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 6.00(\mathrm{dd}, 2 \mathrm{H}, J=8.3,2.0 \mathrm{~Hz}), 5.62(\mathrm{dd}, 2 \mathrm{H}$, $J=8.3,1.9 \mathrm{~Hz}$), $3.12(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 3$ H); ${ }^{13} \mathrm{C}$ NMR δ 135.5, 131.2, 71.0, 65.8, 52.1, 28.8, 28.2; MS (EI) m / e (relative intensity) $154\left(\mathrm{M}^{+}, 0.3\right), 153(0.2), 149(0.2), 139$ ([M $\left.\mathrm{CH}_{3}\right]^{+}, 100$), 123 (90), 107 (50), 91 (20), 79 (10); HRMS (EI) calcd for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{O}_{2}\left(\mathrm{M}-\mathrm{CH}_{3}\right)$ 139.0759, found 139.0743. 14 $\beta: R_{f}(\mathrm{EtOAc} /$ hexanes, $1: 1$) $=0.4 ; \mathrm{mp} 79^{\circ} \mathrm{C} ; \mathbb{R}$ (neat) 3413, 2975, 2930, 2355, 1456, 1366, 1136, 1069, 783, $687 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 6.00$ (dd, $2 \mathrm{H}, J$ $=12.9,2.7 \mathrm{~Hz}), 5.57(\mathrm{dd}, 2 \mathrm{H}, J=12.9,2.7 \mathrm{~Hz}), 3.02(\mathrm{~s}, 3 \mathrm{H}), 1.74$ $(\mathrm{s}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 136.3,131.1,71.0$, $65.7,51.6,28.1,28.0$; MS (EI) m / e (relative intensity) $154\left(\mathrm{M}^{+}, 2\right)$, $139\left(\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}, 100\right), 123$ (25), 107 (20); HRMS (EI) calcd for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{O}_{2}\left(\mathrm{M}-\mathrm{CH}_{3}\right)$ 139.0759, found 139.0748.
(1SR,2SR,3RS,4SR,5SR,6RS)-2,3:5,6-Diepoxy-1,4-dimethoxy-1,4dimethylcyclohexane (15α) from 14α. A solution of alcohol 14α ($52 \mathrm{mg}, 0.34 \mathrm{mmol}$) in 3 mL of CCl_{4} was treated with $296 \mathrm{mg}(1.69$ mmol) of MCPBA and $24 \mathrm{mg}(0.07 \mathrm{mmol})$ of 3 -tert-butyl-4-hydroxy5 -methylphenyl sulfide. The resulting slurry was heated to $65{ }^{\circ} \mathrm{C}$ for 2 h . The solvent was removed under reduced pressure, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added to dissolve the solid residue. Chromatography on SiO_{2}
(EtOAc/hexanes, 1:1) gave 42 mg (67\%) of a diepoxy alcohol as a white solid: ${ }^{1} \mathrm{H}$ NMR $\delta 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{~d}, 2 \mathrm{H}, J=4.2 \mathrm{~Hz}), 3.09$ (d, $2 \mathrm{H}, J=4.2 \mathrm{~Hz}), 2.86(\mathrm{~s}, 1 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{A}$ solution of crude diepoxide ($36 \mathrm{mg}, 0.19 \mathrm{mmol}$) in 2 mL of THF was treated at $0{ }^{\circ} \mathrm{C}$ with $76 \mathrm{mg}(1.9 \mathrm{mmol})$ of $\mathrm{NaH}(60 \%$ emulsion in mineral oil) and $270 \mathrm{mg}(1.9 \mathrm{mmol})$ of MeI. The reaction mixture was stirred for 30 min at $21^{\circ} \mathrm{C}$ and partitioned between EtOAc and brine. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and chromatographed on silica gel (EtOAc/hexanes, 1:4) to give $34 \mathrm{mg}(87 \%)$ of $\mathbf{1 5} \alpha$ as a white solid: $R_{f}($ EtOAc/hexanes, $1: 1)=0.7$; mp $78^{\circ} \mathrm{C}$; IR (neat) 2977, 1455, 1215, 1161, 1103, 1049, $826 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 3.64(\mathrm{~s}, 6 \mathrm{H})$, 3.12 (s, 4 H), 1.31 (s, 6 H); ${ }^{13} \mathrm{C}$ NMR δ 71.3, 56.3, 53.4, 22.3; MS (EI) m / e (relative intensity) $200\left(\mathrm{M}^{+}, 0.5\right), 185\left(\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}, 4\right), 169$ (0.3), 162 (0.3), 153 (3), 141 (25), 125 (20), 109 (40), 95 (30), 89 (50), 83 (20), 72 (25), 67 (10), 59 (60), 53 (30); HRMS (EI) calcd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{O}_{4}\left(\mathrm{M}-\mathrm{CH}_{3}\right) 185.0814$, found 185.0807 .
(1SR,2SR,3RS,4SR,5SR,6RS)-2,3:5,6-Diepoxy-1,4-dimethoxy-1,4dimethylcyclohexane (15α) from 16α. A solution of 32 mg (0.15 mmol) of 16α in THF (5 mL) was treated at $21^{\circ} \mathrm{C}$ with $0.2 \mathrm{~mL}(0.2$ mmol) of 1.0 M TBAF in THF. After 20 min , the reaction mixture was partitioned between EtOAc and brine. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to give $20 \mathrm{mg}(100 \%)$ of syn-1,4-dimethyl-2,5-cyclohexadien-1,4-diol (17α) as a white solid: R_{f} (EtOAc/ hexanes, 1:1) $=0.3$; ${ }^{1} \mathrm{H}$ NMR $\delta 5.76$ ($\mathrm{s}, 4 \mathrm{H}$), 2.95 (bs, 2 H), 1.27 (s , 6 H); ${ }^{13} \mathrm{C}$ NMR δ 132.7, 65.4, 28.4; MS (EI) 125 ($\left[\mathrm{M}-\mathrm{CH}_{3}\right], 100$), 110 (35), 97 (15), 79 (20). The crude diol was dissolved in 10 mL of CCl_{4} and treated at $21^{\circ} \mathrm{C}$ with $132 \mathrm{mg}(0.75 \mathrm{mmol})$ of MCPBA for 4 h. The solvent was removed under reduced pressure, and the solid residue was chromatographed on SiO_{2} (EtOAc/hexanes, 10:1) to give 19 mg (71%) of syn-(2SR,3RS,5SR,6RS)-2,3:5,6-diepoxy-1,4-dimethyl1,4 -cyclohexanediol as a white solid: $R_{f}(\mathrm{EtOAc})=0.1 ; \mathrm{mp} 138-140$ ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}$) $\delta 3.32(\mathrm{~s}, 4 \mathrm{H}), 1.38(\mathrm{~s}, 6 \mathrm{H})$. A solution of 15 $\mathrm{mg}(0.09 \mathrm{mmol})$ of the diepoxy diol in 2 mL of THF was treated at 21 ${ }^{\circ} \mathrm{C}$ with 36 mg (0.9 mmol) of NaH (60% emulsion in mineral oil) and $128 \mathrm{mg}(0.9 \mathrm{mmol})$ of MeI. The reaction mixture was stirred for 2 h and partitioned between EtOAc and brine. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and chromatographed on SiO_{2} (EtOAc/hexanes, 1:4) to give $15 \mathrm{mg}(83 \%)$ of 15α as a white solid. $R_{f}, \mathrm{mp}, \mathrm{IR}$, and ${ }^{1} \mathrm{H}$ NMR data were identical to those of the sample prepared from 14α.
(1SR,2RS,3SR,4RS,5RS,6SR)-2,3:5,6-Diepoxy-1,4-dimethoxy-1,4dimethylcyclohexane ($\mathbf{1 5 \beta}$). A solution of alcohol $14 \beta(15 \mathrm{mg}, 0.1$ $\mathrm{mmol})$ in 1 mL of CCl_{4} was treated with $85 \mathrm{mg}(0.49 \mathrm{mmol})$ of mCPBA and 6.9 mg (0.02 mmol) of 3-tert-buty1-4-hydroxy-5-methylphenyl sulfide. The resulting slurry was heated to $65^{\circ} \mathrm{C}$ for 2 h , the solvent was removed under reduced pressure, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added to dissolve the residue. Chromatography on SiO_{2} ($\mathrm{EtOAc} /$ hexanes, 1:1) gave 13 $\mathrm{mg}(71 \%)$ of a diepoxy alcohol as a white solid: ${ }^{1} \mathrm{H}$ NMR $\delta 3.41$ (s, 3 H), $3.22(\mathrm{~d}, 2 \mathrm{H}, J=3.5 \mathrm{~Hz}$), $3.17(\mathrm{~d}, 2 \mathrm{H}, J=3.5 \mathrm{~Hz}$), 2.86 (bs, $1 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H})$. A solution of crude diepoxide (11 $\mathrm{mg}, 0.06 \mathrm{mmol}$) in 1 mL of THF was treated at $0^{\circ} \mathrm{C}$ with $23 \mathrm{mg}(0.58$ mmol) of $\mathrm{NaH}(60 \%$ emulsion in mineral oil) and $82 \mathrm{mg}(0.58 \mathrm{mmol})$ of MeI. The reaction mixture was stirred for 30 min at $21^{\circ} \mathrm{C}$ and partitioned between EtOAc and brine. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and chromatographed on SiO_{2} (EtOAc/hexanes, 1:4) to give $21 \mathrm{mg}(94 \%)$ of 15β as a white solid: $R_{f}($ EtOAc/hexanes, $1: 1)=0.7$; $\mathrm{mp} 38^{\circ} \mathrm{C}$; IR (neat) $2977,1119,1091,1049,833,668 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{~d}, 2 \mathrm{H}, J=3.8 \mathrm{~Hz}), 3.09(\mathrm{~d}, 2 \mathrm{H}$, $J=3.8 \mathrm{~Hz}$), $1.58(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 71.3,70.0,57.6$, 56.5, 52.5, 51.8, 21.7, 20.8; MS (EI) m / e (relative intensity) 200 (M^{+}, 0.5), $185\left(\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}, 4\right), 169(0.3), 162$ (0.3), 153 (4), 141 (25), 125 (20), 109 (40), $95(30), 89(50), 83(20), 72(25), 67(10), 59(60), 53$ (30); HRMS (EI) calcd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{O}_{4}\left(\mathrm{M}-\mathrm{CH}_{3}\right)$ 185.0814, found 185.0828.
syn-1,4-Dimethyl-4-((trimethylsilyl)oxy)-2,5-cyclohexadienol (16 α) and anti-1,4-Dimethyl-4-((trimethylsilyl)oxy)-2,5-cyclohexadienol (16f). To a solution of 10 ($102 \mathrm{mg}, 0.52 \mathrm{mmol}$) in dry THF (10 mL) was added dropwise at $-78{ }^{\circ} \mathrm{C} 3.5 \mathrm{~mL}(5.2 \mathrm{mmol})$ of $\mathrm{CH}_{3} \mathrm{MgBr}(1.5$ M solution in $\mathrm{THF} /$ toluene, 3:1). After 30 min , the reaction mixture was quenched with 5% aqueous NaHCO_{3} solution and extracted with EtOAc. The organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo to give a colorless oil. Chromatographic separation on SiO_{2} (EtOAc/hexanes, $1: 1$) gave $97 \mathrm{mg}(88 \%)$ of 16α
and $5.5 \mathrm{mg}(5 \%)$ of 16β as white solids. 16α : R_{f} (EtOAc/hexanes, $1: 1)=0.6 ; \mathrm{mp} 32-34^{\circ} \mathrm{C}$; IR (neat) $3386,3029,2971,2926,1402$, 1364, 1250, 1138, 1092, 1015, 939, 912, 864, 841, $776 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 5.84(\mathrm{~d}, 2 \mathrm{H}, J=10.3 \mathrm{~Hz}), 5.76(\mathrm{~d}, 2 \mathrm{H}, J=10.3 \mathrm{~Hz}), 1.35(\mathrm{~s}, 3 \mathrm{H})$, 1.31 (s, 3 H), 0.07 (s, 9 H); ${ }^{13} \mathrm{C}$ NMR δ 133.7, 131.4, 68.4, 65.7, 31.4, 28.8, 2.5; MS (EI) m/e (relative intensity) $197\left(\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}, 80\right), 181$ (100), 163 (15), 149 (20), 122 (20), 105 (60), 91 (10), 75 (45), 43 (10); HRMS (EI) calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{Si}\left(\mathrm{M}-\mathrm{CH}_{3}\right) 197.0998$, found 197.0992. 16 $\beta: R_{f}($ EtOAc/hexanes, $1: 1)=0.5 ; \mathrm{mp} 53-54^{\circ} \mathrm{C}$; \mathbb{R} (neat) $3584,3386,3027,2971,1455,1402,1362,1250,1138,1092$, 1013, 939, 864, 841, $776 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 5.78$ (dd, $2 \mathrm{H}, J=9.3,2.1$ Hz), 5.71 (dd, $2 \mathrm{H}, J=9.3,2.0 \mathrm{~Hz}$), $1.87(\mathrm{~s}, 1 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.22$ (s, 3 H), 0.07 ($\mathrm{s}, 9 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\delta 134.9,131.8,68.2,65.7,31.8,27.4$, 2.3; MS (EI) m/e (relative intensity) $197\left(\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}, 100\right), 181(80)$, 163 (10), 149 (10), 122 (10), 105 (30), 91 (10), 75 (25); HRMS (EI) calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{Si}\left(\mathrm{M}-\mathrm{CH}_{3}\right)$ 197.0998, found 197.1002.
syn-1,4-Dimethyl-2,5-cyclohexadien-1,4-diol (17 α), anti-1,4-Di-methyl-2,5-cyclohexadien-1,4-diol (18 β), and ($4 R S, 5 R S$)-4,5-Di-methyl-4-hydroxy-2-cyclohexenone (19). To a solution of $9(127 \mathrm{mg}$, 1.02 mmol) in 10 mL of dry THF was added dropwise during 10 min at $-78^{\circ} \mathrm{C} 0.7 \mathrm{~mL}(10.2 \mathrm{mmol})$ of $\mathrm{CH}_{3} \mathrm{MgBr}(1.5 \mathrm{M}$ solution in THF/ toluene, $3: 1$). After 30 min , the reaction mixture was quenched with 5% aqueous NaHCO_{3} solution and extracted with EtOAc. The organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo to give a colorless oil. Chromatographic separation on $\mathrm{SiO}_{2}(\mathrm{EtOAc} /$ hexanes, 1:1) gave 37.2 mg (26%) of a 7.9:1 mixture of 17α and 18β as white solids and $82.8 \mathrm{mg}(58 \%)$ of 19 as a colorless oil. $R_{f},{ }^{1} \mathrm{H}$ NMR, and ${ }^{13} \mathrm{C}$ NMR data for 17α were identical to those of the sample prepared earlier from 16α and literature ${ }^{16}$ values. $18 \beta:{ }^{16} R_{f}$ (EtOAc/ hexanes, 1:1) $=0.28$; ${ }^{1} \mathrm{H}$ NMR $\delta 5.80(\mathrm{~s}, 4 \mathrm{H}), 1.32(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ 133.3, 65.3, 28.3. 19: R_{f} (EtOAc/hexanes, 1:1) $=0.61 ; \mathrm{mp}$ $50-51^{\circ} \mathrm{C}$; IR (neat) $3391,2971,2942,2886,1663,1505,1455,1424$, $1379,1267,1198,1129,1086,1013,932,853,793,725,685 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 6.67(\mathrm{~d}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}), 5.83(\mathrm{~d}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz})$, 2.73 (bs, 1 H), 2.41 (dd, $1 \mathrm{H}, J=16.6,10.1 \mathrm{~Hz}$), 2.30 (dd, $1 \mathrm{H}, J=$ $16.6,4.4 \mathrm{~Hz}$), 2.09 (dddq, $1 \mathrm{H}, J=10.1,6.8,4.4,1.6 \mathrm{~Hz}$), 1.38 (s, 3 $\mathrm{H}), 1.02(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR $\delta 200.4,154.1,128.0,69.1$, 42.0, 38.8, 27.1, 14.7; MS (EI) m/e (relative intensity) $140\left(\mathrm{M}^{+}, 20\right)$, 125 ([M-CH3] ${ }^{+}, 20$), 107 (25), 98 (100), 91 (100), 79 (20), $70(30)$, 55 (40), 40 (60); HRMS (EI) calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{2}$ 140.0837, found 140.0827.
(5RS,10RS)-10-Methyl-1-oxaspiro[4.5]dec-6-en-8-one (21), (5SR,6RS,7SR,8SR,9SR,10RS)-6,7:9,10-Diepoxy-8-hydroxy-8-meth-yl-1-oxaspiro [4.5]decane (22 α), and ($5 S R, 6 R S, 7 S R, 8 S R, 9 R S, 10 S R$)-6,7:9,10-Diepoxy-8-hydroxy-8-methyl-1-oxaspiro[4.5]decane (22 β). To a solution of $6(30 \mathrm{mg}, 0.2 \mathrm{mmol})$ in dry THF (3 mL) was added dropwise for 10 min at $-78{ }^{\circ} \mathrm{C} 0.3 \mathrm{~mL}(2.0 \mathrm{mmol})$ of $\mathrm{CH}_{3} \mathrm{MgBr}(1.5$ M solution in THF /toluene, 1:3). After 30 min , the reaction mixture was quenched with 5% aqueous NaHCO_{3} solution and extracted with EtOAc. The organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. The colorless residue was chromatographed on SiO_{2} (EtOAc/hexanes, 1:1) to give 10.6 mg (32%) of an inseparable 8.6:1 mixture of $20 \alpha, \beta$ as a colorless liquid and $13.9 \mathrm{mg}(42 \%)$ of 21 as a colorless oil. 20 $\alpha: R_{f}$ (EtOAc/hexanes, 1:1) $=0.4$; ${ }^{1} \mathrm{H}$ NMR δ $5.82(\mathrm{~d}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz}), 5.70(\mathrm{~d}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz}), 3.91(\mathrm{t}, 2 \mathrm{H}$, $J=6.7 \mathrm{~Hz}), 2.57(\mathrm{bs}, 1 \mathrm{H}), 2.06-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.78(\mathrm{t}, 2 \mathrm{H}, J=7.3$ Hz), $1.25(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ 133.5, 129.9, 76.2, 68.0, $65.3,38.4$, 28.3, 26.4; MS (EI) m / e (relative intensity) $166\left(\mathrm{M}^{+}, 30\right), 151$ (50), 123 (100), 121 (30), 108 (20), 95 (20), 77 (20), 65 (15), 55 (12); HRMS (EI) calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2} 166.0994$, found 166.0987. 20 $\beta: R_{f}$ (EtOAc/ hexanes, 1:1) $=0.4 ;{ }^{1} \mathrm{H}$ NMR $\delta 1.31$ ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR δ 134.0, 130.5. 21: $R_{f}($ EtOAc/hexanes, $1: 1)=0.6 ; \mathbb{R}$ (neat) 2967, 2874, 1682, 1462, 1385, 1281, 1237, 1200, 1140, 1067, 1034, 926, 864, 77, 737 cm^{-1}; ${ }^{1} \mathrm{H}$ NMR $\delta 6.61(\mathrm{~d}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}), 5.87(\mathrm{~d}, 1 \mathrm{H}, J=10.0$ Hz), $4.0-3.85(\mathrm{~m}, 2 \mathrm{H}), 2.47$ (dd, $1 \mathrm{H}, J=16.8,2.4 \mathrm{~Hz}$), 2.42 (dd, 1 $\mathrm{H}, J=16.8,3.0 \mathrm{~Hz}), 2.21$ (ddq, $1 \mathrm{H}, J=6.8,3.0,2.4 \mathrm{~Hz}$), $2.16-2.10$ $(\mathrm{m}, 1 \mathrm{H}), 2.05-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.93-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{~d}, 3 \mathrm{H}, J=$ $6.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR δ 199.4, 152.2, 127.4, 81.5, 68.8, 43.3, 38.2, 35.8, 26.2, 14.9; MS (EI) m / e (relative intensity) $166\left(\mathrm{M}^{+}, 0.3\right), 151$ (0.3), 147 (0.1), 138 (10), 124 ($\left[\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{6}\right]^{+}, 100$), 96 (20), 82 (20), 77 (10), 68 (15), 55 (50); HRMS (EI) calcd for $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}_{2}\left(\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{6}\right)$ 124.0524, found 124.0517. A solution of $20 \alpha, \beta(9.0 \mathrm{mg}, 0.05 \mathrm{mmol})$
in 2 mL of CCl_{4} was treated with $47 \mathrm{mg}(0.27 \mathrm{mmol})$ of MCPBA and 6 mg (0.02 mmol) of 3 -tert-butyl-4-hydroxy- 5 -methylphenyl sulfide. The resulting suspension was heated to $65^{\circ} \mathrm{C}$ for 4 h , the solvent was removed under reduced pressure, and the residue was dissolved in CH_{2} Cl_{2}. Chromatography on SiO_{2} ($\mathrm{EtOAc} /$ hexanes, $1: 1$) gave $6.6 \mathrm{mg}(61 \%)$ of a 8.6:1 mixture of $\mathbf{2 2 \alpha}, \beta$ as a viscous oil. 22 $\alpha: R_{f}$ (EtOAc/hexanes, $1: 1)=0.1 ;$ IR (neat) $3403,2957,2886,1460,1383,1291,1161,1127$, 1067, 1048, 922, 885, 868, 853, $714 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 4.07(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}$ $=6.6 \mathrm{~Hz}), 3.16(\mathrm{~s}, 4 \mathrm{H}), 2.99(\mathrm{bs}, 1 \mathrm{H}), 2.15-2.05(\mathrm{~m}, 2 \mathrm{H}), 2.0-1.9$ (m, 2 H), 1.34 (s, 3 H), ${ }^{13} \mathrm{C}$ NMR $\delta 78.5,69.0,66.9,60.3,59.8,33.7$, 26.3, 22.5; MS (EI) m / e (relative intensity) $198\left(\mathrm{M}^{+}, 30\right), 169(10)$, 149 (17), 137 (15), 113 (100), 100 (35), 87 (50), 71 (60), 58 (30); HRMS (EI) calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{4}$ 198.0892, found 198.0909. 22 β : ${ }^{1} \mathrm{H}$ NMR $\delta 4.12(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 3.09(\mathrm{~s}, 4 \mathrm{H}), 2.34-2.29(\mathrm{~m}, 2 \mathrm{H})$, 1.54 (s, 3 H); ${ }^{13} \mathrm{C}$ NMR δ 70.2, 58.3, 56.2, 34.5, 25.5, 23.8.
(5SR,6RS)-6-Methyl-1-oxaspiro[4.5]dec-6-en-8-one (23). A solution of $46 \mathrm{mg}(0.28 \mathrm{mmol})$ of enone $21 \mathrm{in} \mathrm{MeOH}(5 \mathrm{~mL})$ was treated with 10 mg of $10 \% \mathrm{Pd} / \mathrm{C}$. Hydrogen gas was bubbled for 30 min through the suspension. The reaction mixture was filtered through a short plug of Celite, the solvent was removed, and the oily residue was diluted with 20 mL of hexanes and washed with brine. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated in vacuo, and chromatographed on SiO_{2} ($\mathrm{EtOAc} / \mathrm{hexanes}, 1: 10$) to give $39 \mathrm{mg}(83 \%)$ of $\mathbf{2 3}$ as a colorless oil: $R_{f}($ EtOAc/hexanes, $1: 1)=0.72 ;{ }^{1} \mathrm{H}$ NMR $\delta 3.94-3.79(\mathrm{~m}, 2 \mathrm{H})$, 2.63 (ddd, $1 \mathrm{H}, J=14.5,13.0,6.4 \mathrm{~Hz}$), 2.42 (dd, $1 \mathrm{H}, J=14.3,12.2$ Hz), $2.24-2.16(\mathrm{~m}, 2 \mathrm{H}), 2.07-1.84(\mathrm{~m}, 5 \mathrm{H}), 1.72-1.61(\mathrm{~m}, 2 \mathrm{H})$, $0.93(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 212.1,82.0,68.3,46.3,40.4$, 38.3, 36.8, 34.4, 26.5, 15.7.
syn-4-(Benzoyloxy)-1,4-dimethyl-2,5-cyclohexadien-1-ol (24 α) and anti-4-(Benzoyloxy)-1,4-dimethyl-2,5-cyclohexadien-1-01 (24ß). To a solution of $7(100 \mathrm{mg}, 0.44 \mathrm{mmol})$ in 5 mL of dry THF was added dropwise for 10 min at $-78{ }^{\circ} \mathrm{C} 0.3 \mathrm{~mL}(0.5 \mathrm{mmol})$ of $\mathrm{CH}_{3} \mathrm{MgBr}(1.5$ M solution in THF /toluene, 1:3). After 30 min , the reaction mixture was quenched with 5% aqueous NaHCO_{3} solution and extracted with EtOAc. The organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo to give an $>8: 1$ mixture of $24 \alpha, \beta$ as a light yellow oil that decomposed rapidly at $21^{\circ} \mathrm{C} .24 \alpha: R_{f}$ (EtOAc/hexanes, $1: 1)=0.5$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.96(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.6-7.5(\mathrm{~m}, 1 \mathrm{H})$, $7.40(\mathrm{t}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 6.01(\mathrm{~d}, 2 \mathrm{H}, J=9.9 \mathrm{~Hz}), 5.82(\mathrm{~d}, 2 \mathrm{H}, J$ $=9.9 \mathrm{~Hz}), 3.48(\mathrm{bs}, 1 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H})$. A solution of 10 mg of crude $24 \alpha, \beta$ in THF (5 mL) was treated at $-78^{\circ} \mathrm{C}$ with 10 $\mathrm{mg}(0.27 \mathrm{mmol})$ of LiAlH_{4}. The reaction mixture was slowly warmed to $21^{\circ} \mathrm{C}$, and stirring was continued for 20 min at this temperature. The solution was cooled to $-10^{\circ} \mathrm{C}$, quenched with a mixture of the saturated aqueous NaHCO_{3} and brine, and washed with $\mathrm{EtOAc}(2 \times$ 10 mL), and the organic layer was separated, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. The crude product was chromatographed on SiO_{2} (EtOAc/hexanes, $1: 1$) to give 5.6 mg of a 10.1:1 mixture of 17α and 18β.
syn-8-Hydroxy-8-methyl-1-oxaspiro[4.5]deca-6,9-dien-2-one ($\mathbf{2 5 \alpha}$) and anti-8-Hydroxy-8-methyl-1-oxaspiro[4.5]deca-6,9-dien-2-one (25 β). To a solution of 8 ($95 \mathrm{mg}, 0.58 \mathrm{mmol}$) in dry THF (7 mL) was added dropwise for 10 min at $-78^{\circ} \mathrm{C} 0.6 \mathrm{~mL}(0.87 \mathrm{mmol})$ of $\mathrm{CH}_{3} \mathrm{MgBr}(1.4$ M solution in THF/toluene, 1:3). After 30 min , the reaction mixture was quenched with 5% aqueous NaHCO_{3} solution and extracted with EtOAc. The organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to give a $32: 1$ mixture of $25 \alpha, \beta$ as a colorless oil according to ${ }^{1} \mathrm{H}$ NMR analysis. Chromatographic separation on SiO_{2} (benzene/acetone, 3:1) gave $57.4 \mathrm{mg}(55 \%)$ of $\mathbf{2 5} \alpha$ as a colorless liquid and $2.5 \mathrm{mg}(2.4 \%)$ of $\mathbf{2 5} \beta$ as a white solid. 25α : R_{f} (benzene/acetone, $1: 1)=0.45 ; \mathbb{R}$ (neat) $3413,2970,1769,1698,1682,1455,1410,1361$, $1302,1181,1123,1071,1015,967,912,860,810,781,756,668 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 5.92(\mathrm{~d}, 2 \mathrm{H}, J=10.1 \mathrm{~Hz}), 5.70(\mathrm{~d}, 2 \mathrm{H}, J=10.1 \mathrm{~Hz})$, $3.22(\mathrm{bs}, 1 \mathrm{H}), 2.57(\mathrm{t}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}), 2.04(\mathrm{t}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz})$, 1.20 (s, 3 H); ${ }^{13} \mathrm{C}$ NMR δ 176.5, 136.0, 126.5, 79.1, 65.1, 34.4, 28.5, 28.3; MS (EI) m/e (relative intensity) $180\left(\mathrm{M}^{+}, 20\right), 165$ (30), 134 (2.5), 121 (35), 108 (15), 91 (10), 77 (13), 65 (7), 56 (10), 55 (100), 53 (10), 51 (10), 43 (30), 41 (10); HRMS (EI) calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} 180.0786$, found 180.0786. 25 $\beta: R_{f}$ (benzene/acetone, 1:1) $=0.40 ; \mathrm{mp} 112{ }^{\circ} \mathrm{C}$; IR (neat) $3260,3017,2980,1769,1451,1414,1364,1304,1207,1184$, 1123, 1084, 1008, $968,911,789 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 6.06$ (d, $2 \mathrm{H}, J=$ $9.3 \mathrm{~Hz}), 5.80(\mathrm{~d}, 2 \mathrm{H}, J=9.3 \mathrm{~Hz}), 2.68(\mathrm{t}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}), 2.20(\mathrm{t}$,
$2 \mathrm{H}, J=8.3 \mathrm{~Hz}$), 1.83 (bs, 1 H), 1.37 (s, 3 H); ${ }^{13} \mathrm{C}$ NMR $\delta 176.4$, 137.2, 127.1, 79.1, 65.5, 34.1, 28.8, 27.9; MS (EI) m / e (relative intensity) $180\left(\mathrm{M}^{+}, 2\right), 165\left(\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}, 40\right), 125(25), 108(20), 91$ (10), 77 (11), 65 (10), 55 (100).
(5SR,6RS,7SR,8SR,9SR,10RS)-6,7:9,10-Diepoxy-8-hydroxy-8-meth-yl-1-oxaspiro [4.5]decan-2-one (26 α). A solution of alcohol 25α (101 $\mathrm{mg}, 0.56 \mathrm{mmol}$) in 3 mL of CCl_{4} and 0.3 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated with 970 mg (5.62 mmol) of MCPBA. The resulting suspension was heated to $40^{\circ} \mathrm{C}$ for 24 h , the solvent was removed under reduced pressure, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added to dissolve the solid residue Chromatography on SiO_{2} (EtOAc/hexanes, $1: 1$, then EtOAc) gave 79 $\mathrm{mg}(66 \%)$ of 26α as a white solid (recrystallized from acetone and EtOAc for X-ray analysis): R_{f} (benzene/acetone, 1:1) $=0.17 ; \mathrm{mp} 110$ ${ }^{\circ} \mathrm{C}$; $\mathbb{I R}$ (neat) 3430, 2982, 1734, 1701, 1474, 1458, 1375, 1242, 1169 $1111,1048,941,841,733 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 3.25(\mathrm{~d}, 2 \mathrm{H}, J=3.8 \mathrm{~Hz}$), $3.20(\mathrm{~d}, 2 \mathrm{H}, J=3.8 \mathrm{~Hz}), 2.76(\mathrm{bs}, 1 \mathrm{H}), 2.70(\mathrm{t}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}$), $2.19(\mathrm{t}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}), 1.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O} / \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ 179.8, 83.8, 67.6, 61.1, 58.7, 28.8, 28.6, 23.5; MS (EI) m/e (relative intensity) $212\left(\mathrm{M}^{+}, 1\right), 183$ (5), 169 (6), 165 (2), 153 (10), 123 (12), 111 (10), 95 (35), 81 (25), 71 (20), 55 (30); MS (CI) 213 ([M + 1] ${ }^{+}$ 100), 195 (20), 167 (25), 153 (30), 139 (10), 125 (10), 111 (15), 95 (10).
syn-4-Methoxy-4-methyl-2,5-cyclohexadien-1-ol (27 α) and anti-4-Methoxy-4-methyl-2,5-cyclohexadien-1-ol (27ק). To a solution of $20 \mathrm{mg}(0.14 \mathrm{mmol})$ of $5 \mathrm{and} 108 \mathrm{mg}(0.28 \mathrm{mmol})$ of $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ in 5 mL of MeOH was added $6 \mathrm{mg}(0.14 \mathrm{mmol})$ of NaBH_{4} in three portions at $0^{\circ} \mathrm{C}$. The reaction mixture was quenched by addition of 0.1 mL of acetone and diluted with EtOAc. The organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo to give $20 \mathrm{mg}(92 \%)$ of an inseparable mixture of $27 \alpha, \beta$ as a white solid: R_{f} (EtOAc/hexanes, $3: 2)=0.5 ;$ IR (neat) $3339,3029,2977,2934,2824,1516,1451,1408$, 1366, 1266, 1221, 1132, 1090, 1048, 889, 862, 820, 756, 698, 652 cm^{-1}; ${ }^{1} \mathrm{H}$ NMR $\delta 6.10(\mathrm{dd}, 2 \mathrm{H}, J=10.2,3.1 \mathrm{~Hz}), 6.02(\mathrm{dd}, 2 \mathrm{H}, J=$ $10.2,3.0 \mathrm{~Hz}), 5.69-5.63(\mathrm{~m}, 4 \mathrm{H}), 4.41(\mathrm{bs}, 2 \mathrm{H}), 3.09(\mathrm{~s}, 3 \mathrm{H}), 2.99$ (s, 3 H), 2.26 (bs, 2 H), 1.30 ($\mathrm{s}, 3 \mathrm{H}$), 1.23 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR δ 132.8, 132.5, 131.9, 103.8, 70.9, 70.6, 62.4, 62.1, 51.9, 51.3, 28.2, 28.0; MS (EI) m / e (relative intensity) $107\left(\left[\mathrm{M}-\mathrm{CH}_{3} \mathrm{OH}-\mathrm{H}\right]^{+}, 100\right), 90(12)$, 77 (18), 59 (10), 51 (9), 45 (9); HRMS (EI) calcd for $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}$ (M $\left.\mathrm{CH}_{3} \mathrm{OH}-\mathrm{H}\right)$ 107.0497, found 107.0494
syn-1-Ethynyl-4-methoxy-4-methyl-2,5-cyclohexadien-1-ol (28 α) and anti-1-Ethynyl-4-methoxy-4-methyl-2,5-cyclohexadien-1-ol (28 β). To a solution of $5(35 \mathrm{mg}, 0.25 \mathrm{mmol})$ in 5 mL of dry THF was added dropwise for 10 min at $-78^{\circ} \mathrm{C} 0.75 \mathrm{~mL}(0.75 \mathrm{mmol})$ of $\mathrm{C}_{2} \mathrm{HMgBr}$ (1.0 M solution in THF). The reaction mixture was slowly warmed to $0^{\circ} \mathrm{C}$. After 30 min , the reaction mixture was quenched with 5% aqueous NaHCO_{3} solution and extracted with EtOAc. The organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and chromatographed on SiO_{2} (EtOAc/hexanes, 1:3) to give an inseparable mixture of 29 mg (70%) of $\mathbf{2 8} \alpha, \beta$ as a colorless yellow solid: R_{f} (EtOAc/hexanes, $\left.1: 1\right)=0.5$; IR (neat) 3312, 3245, 2936, 2830, 2363, 2350, 1470, 1372, 1092, 1049, $768,683,652,617 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 6.09(\mathrm{~d}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz}), 6.04$ (d, $2 \mathrm{H}, J=10.0 \mathrm{~Hz}), 5.73(\mathrm{~d}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz}), 5.70(\mathrm{~d}, 2 \mathrm{H}, J=$ 10.0 Hz), $3.09(\mathrm{~s}, 3 \mathrm{H}), 3.06(\mathrm{~s}, 3 \mathrm{H}), 2.76(\mathrm{~s}, 2 \mathrm{H}), 2.53(\mathrm{~s}, 2 \mathrm{H}), 1.30$ $(\mathrm{s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ 132.1, 131.2, 84.7, 84.3, 72.9, 72.7, $70.8,70.4,61.5,61.1,52.2,51.9,27.6$; MS (EI) m / e (relative intensity) $164\left(\mathrm{M}^{+}, 3\right), 149\left(\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}, 95\right), 133(100), 115(55), 105(60), 91$ (30), 77 (45), 63 (20), 51 (20); HRMS (EI) calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{O}_{2}$ (M CH_{3}) 149.0603, found 149.0603
syn-1-(1-Hexynyl)-4-methoxy-4-methyl-2,5-cyclohexadien-1-ol (29 α) and anti-1-(1-Hexynyl)-4-methoxy-4-methyl-2,5-cyclohexadien-1-ol (298). To a solution of 1 -hexyne ($45 \mathrm{mg}, 0.36 \mathrm{mmol}$) in dry THF (5 mL) was added dropwise for 5 min at $-78^{\circ} \mathrm{C} 0.85 \mathrm{~mL}$ of $t-\mathrm{BuLi}(1.7$ M solution in pentane, 1.8 mmol). A solution of 5 in 2 mL of THF was added to the reaction mixture at $-78^{\circ} \mathrm{C}$. The solution was slowly warmed to $0{ }^{\circ} \mathrm{C}$ over 30 min , quenched by addition of 5% aqueous NaHCO_{3} solution, and extracted with EtOAc. The organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and chromatographed on SiO_{2} (EtOAc/hexanes, $1: 3$) to give 9.7 mg (14%) of 29α and $8.6 \mathrm{mg}(12 \%)$ of 29β as colorless liquids. 29 α : R_{f} (EtOAc/hexanes, $1: 1$) $=0.55$; IR (neat) $3692,3677,3652,3631,3569,3384,3031,2959,2934,2874$, 2824, 2200, 1460, 1406, 1366, 1152, 1090, 1049, 862, $781 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 6.03(\mathrm{dd}, 2 \mathrm{H}, J=8.2,1.7 \mathrm{~Hz}), 5.68(\mathrm{dd}, 2 \mathrm{H}, J=8.2,1.8$

Hz), 3.19 (s, 3 H), 2.24 (bs, 1 H), 2.19 (t, $2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}$), $1.50-1.33$ $(\mathrm{m}, 4 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 132.2$, $131.2,85.8,81.0,70.8,61.5,52.2,30.5,27.8,22.0,18.5,13.6$; MS (EI) m / e (relative intensity) $220\left(\mathrm{M}^{+}, 50\right), 205(100), 187(30), 177$ (60), 171 (20), 159 (90), 145 (60), 135 (50), 129 (55), 121 (70), 115 (60), 105 (100), 91 (60), 81 (85), 72 (30), 65 (40), 55 (50), 50 (7) HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2} 220.1463$, found 220.1459. 29 β : R_{f} (EtOAc/hexanes, 1:1) $=0.6$; IR (neat) 3382, 2959, 2932, 2872, 2200 $1090,1049 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 6.09$ (d, $2 \mathrm{H}, J=11.3 \mathrm{~Hz}$), $5.65(\mathrm{~d}, 2 \mathrm{H}$, $J=11.3 \mathrm{~Hz}$), 3.07 (s, 3 H), $2.19(\mathrm{t}, 2 \mathrm{H}, J=6.7 \mathrm{~Hz}), 2.17(\mathrm{bs}, 1 \mathrm{H})$, $1.64-1.32$ (m, 4 H), 1.31 (s, 3 H), 0.88 (t, $3 \mathrm{H}, J=7.2 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR $\delta 133.1,131.2,86.0,80.7,70.3,61.9,51.9,30.5,27.8,21.9,18.4,13.6$ MS (EI) m/e (relative intensity) $220\left(\mathrm{M}^{+}, 40\right), 205(100), 189(25)$ 177 (30), 172 (10), 159 (30), 147 (30), 135 (20), 129 (40), 121 (70), 121 (50), 115 (30), 105 (70), 91 (40), 81 (85), 72 (80), 65 (75), 55 (25); HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2} 220.1463$, found 220.1447
syn-4-Methoxy-4-methyl-1-phenyl-2,5-cyclohexadien-1-ol (30 α) and anti-4-Methoxy-4-methyl-1-phenyl-2,5-cyclohexadien-1-ol ($\mathbf{3 0 \beta}$). To a solution of $5(24 \mathrm{mg}, 0.17 \mathrm{mmol})$ in dry THF was added dropwise for 10 min at $-78^{\circ} \mathrm{C} 0.35(0.34 \mathrm{mmol}) \mathrm{mL}$ of $\mathrm{PhMgBr}(1.5 \mathrm{M}$ solution in THF). After 30 min , the reaction mixture was quenched with 5% aqueous NaHCO_{3} solution and extracted with EtOAc. The organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated in vacuo, and chromatographed on SiO_{2} (EtOAc/hexanes, 1:1) to give 24 mg (65%) of 30α as a colorless oil and $6.5 \mathrm{mg}(18 \%)$ of 30β as a white solid 30 $: R_{f}($ EtOAc/hexanes, $1: 1)=0.5$; \mathbb{R} (neat) 3403, 2977, 1449, 1130 $1088,1048,947,783,752,700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.36-7.16(\mathrm{~m}, 5 \mathrm{H})$, 5.97 (d, $2 \mathrm{H}, J=10.1 \mathrm{~Hz}$), 5.68 (d, $2 \mathrm{H}, J=10.1 \mathrm{~Hz}$), $3.12(\mathrm{~s}, 3 \mathrm{H})$, 2.27 (bs, 1 H), 1.28 (s, 3 H); ${ }^{13} \mathrm{C}$ NMR δ 144.2, 134.6, 131.1, 128.5 127.4, 125.4, 70.9, 69.7, 52.0, 27.9; MS (EI) m/e (relative intensity) 216 ($\mathrm{M}^{+}, 60$), 201 (100), 185 (70), 167 (40), 152 (30), 141 (25), 115 (20), 105 (22), 91 (10), 77 (25); HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{2}$ 216.1150, found 216.1168. 30 $\beta: R_{f}$ (EtOAc/hexanes, 1:1) $=0.6$; mp $109-110{ }^{\circ} \mathrm{C}$; IR (neat) $3402,2977,1449,1130,1088,1048,947,783$, $752,700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.46-7.19(\mathrm{~m}, 5 \mathrm{H}), 6.03(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=10.2$ $\mathrm{Hz}), 5.75(\mathrm{~d}, 2 \mathrm{H}, J=10.2 \mathrm{~Hz}), 3.10(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{bs}, 1 \mathrm{H}), 1.32(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ 144.4, 135.1, 132.6, 128.5, 127.5, 125.5, 70.7, 69.4 52.5, 28.3; MS (EI) m / e (relative intensity) 216 ($\mathrm{M}^{+}, 90$), 201 (100), 198 ($\left.\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}, 30\right), 185(50), 167(45), 152(40), 141$ (30), 115 (25), 105 (22), 91 (20), 77 (30), 59 (15), 51 (10); HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right)$ 198.1045, found 198.1017 .
syn-1-((Benzyloxy)methyl)-4-methoxy-4-methyl-2,5-cyclohexadien-1-ol (31 α) and anti-1-((Benzyloxy)methyl)-4-methoxy-4-methyl-2,5-cyclohexadien-1-ol (31/). To a solution of $450 \mathrm{mg}(1.1 \mathrm{mmol})$ of $\mathrm{BnOCH}_{2} \mathrm{SnBu}_{3}{ }^{28}$ in 10 mL of THF was added dropwise at $-78^{\circ} \mathrm{C} 3.6$ $\mathrm{mL}(1.0 \mathrm{mmol})$ of 2.5 M nBuLi . The reaction mixture was stirred for 30 min at $-78^{\circ} \mathrm{C}$, and a solution of $5(69 \mathrm{mg}, 0.5 \mathrm{mmol})$ in 3 mL of THF was added by cannula. After 10 min , the reaction mixture was quenched by addition of $5 \% \mathrm{NaHCO}_{3}$ solution. The organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and chromatographed on SiO_{2} (EtOAc/hexanes, 1:2) to give 109 mg (84%) of an inseparable $3: 1$ mixture of $31 \alpha, \beta$ as a colorless oil. 31 $\alpha: R_{f}($ EtOAc/hexanes, 1:2) $=$ 0.55 ; IR (neat) $3414,3027,2977,2932,2859,1455,1408,1364,1215$, 1090, 866, 789, 739, $698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.31(\mathrm{~m}, 5 \mathrm{H}), 5.98(\mathrm{~d}, 2$ $\mathrm{H}, J=10.2 \mathrm{~Hz}$), $5.71(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=10.2 \mathrm{~Hz}), 4.54(\mathrm{~s}, 2 \mathrm{H}), 3.41(\mathrm{~s}, 1$ $\mathrm{H}), 3.35(\mathrm{~s}, 2 \mathrm{H}), 3.12(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 137.6,132.8$, 132.3, 131.6, 128.4, 127.4, 76.8, 73.3, 71.0, 67.6, 51.8, 28.1; MS (EI) m / e (relative intensity) $260\left(\mathrm{M}^{+}, 1\right), 228$ (2), 215 (3), 198 (3), 178 (1.5), 169 (1.2), 152 (5), 139 ($\left[\mathrm{M}-\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right]^{+}, 80$), 124 (20), 108 (30), 91 (100), 77 (10), 65 (15); HRMS (EI) calcd for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{O}_{2}$ (M $-\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$) 139.0759 , found 139.0750. 31 β : ${ }^{1} \mathrm{H}$ NMR δ $7.31(\mathrm{~m}, 5 \mathrm{H}), 6.03(\mathrm{~d}, 2 \mathrm{H}, J=10.3 \mathrm{~Hz}), 5.67(\mathrm{~d}, 2 \mathrm{H}, J=10.3 \mathrm{~Hz})$, 4.55 (s, 2 H), 3.30 (s, 2 H), 3.27 ($\mathrm{s}, 1 \mathrm{H}$), 2.98 (s, 3 H), 1.32 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\delta 137.6,132.8,132.3,131.6,128.4,127.5,76.2,73.3,71.2$, 67.1, 51.4, 27.6

4-Methoxy-4-(1,1,2,2,2-pentafluoroethyl)-2,5-cyclohexadienone (32). A solution of $\mathbf{3 5}$ ($276 \mathrm{mg}, 0.87 \mathrm{mmol}$) in 10 mL of dry THF was treated at $0^{\circ} \mathrm{C}$ with $1.5 \mathrm{mg}(2.62 \mathrm{mmol})$ of $60 \% \mathrm{NaH}$ and $372 \mathrm{mg}(2.62 \mathrm{mmol})$ of $\mathrm{CH}_{3} \mathrm{I}$. The reaction mixture was stirred for 7 h at $0^{\circ} \mathrm{C}$ and partitioned

[^10]between EtOAc and brine. The organic layer was separated, dried ($\mathrm{Na}_{2}{ }^{-}$ SO_{4}), and concentrated in vacuo to give a pale yellow oil. A solution of this crude product in 30 mL of THF was treated at $0^{\circ} \mathrm{C}$ with 3 mL of 0.1 N HCl , stirred for 1.5 h at $0^{\circ} \mathrm{C}$, diluted with EtOAc, and washed with saturated aqueous NaHCO_{3} solution and brine. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and chromatographed on SiO_{2} ($\mathrm{EtOAc} /$ hexanes, $1: 6$) to give 166 mg (79%) of 32 as a colorless oil: R_{f} (EtOAc/hexanes, $1: 4)=0.5 ;$ IR (neat) 2946, 2321, 1686, 1676, 1655, 1638, 1619, 1391, $1343,1283,1210,1175,1105,1065,1026,995,930,853,747,706$; ${ }^{1} \mathrm{H}$ NMR $\delta 6.78(\mathrm{~d}, 2 \mathrm{H}, J=10.3 \mathrm{~Hz}), 6.53(\mathrm{~d}, 2 \mathrm{H}, J=10.3 \mathrm{~Hz})$, 3.25 (s, 3 H); ${ }^{13} \mathrm{C}$ NMR $\delta 183.4,140.7,134.9,118.8$ (qt, $J=276.2$ $\mathrm{Hz}, 35.5 \mathrm{~Hz}), 112.8(\mathrm{tq}, J=264.1,36.2 \mathrm{~Hz}), 75.5(\mathrm{t}, J=24.1 \mathrm{~Hz})$, 52.5; MS (EI) m / e (relative intensity) $242\left(\mathrm{M}^{+}, 1\right), 211$ (2.5), 201 (2.5), 191 (1), 183 (5), 173 (2.2), 163 (20), 123 (100), 114 (20), 95 (20), 81 (10), 74 (10), 69 (13), 59 (12); HRMS (EI) calcd for $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}_{2}(\mathrm{M}-$ $\mathrm{C}_{2} \mathrm{~F}_{5}$) 123.0446 , found 123.0443 .

4-Butoxy-4-methoxy-2,5-cyclohexadienone (34). To a solution of $537 \mathrm{mg}(4.33 \mathrm{mmol})$ of p-hydroquinone monomethyl ether ($\mathbf{3 3}$) in 30 mL of nBuOH at $0^{\circ} \mathrm{C}$ was added $1.71 \mathrm{~g}(5.20 \mathrm{mmol})$ of (diacetoxyiodo)benzene. The reaction mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$, diluted with EtOAc, washed with $\mathrm{H}_{2} \mathrm{O}$, saturated aqueous NaHCO_{3}, and brine, and dried $\left(\mathrm{MgSO}_{4}\right)$. Chromatography on SiO_{2} (hexanes/ EtOAc, 2:1) gave $587 \mathrm{mg}(76 \%)$ of 34 as a colorless oil: K_{f} (EtOAc/ hexanes, $1: 1$) $=0.7 ;{ }^{1} \mathrm{H}$ NMR $\delta 6.85-6.79(\mathrm{~m}, 2 \mathrm{H}), 6.28-6.24(\mathrm{~m}$, $2 \mathrm{H}), 3.55(\mathrm{t}, 2 \mathrm{H}, J=6.5 \mathrm{~Hz}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 1.59-1.52(\mathrm{~m}, 2 \mathrm{H})$, $1.41-1.34(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}$); MS (EI) m/e (relative intensity) $196\left(\mathrm{M}^{+}, 3\right), 165\left(\left[\mathrm{M}-\mathrm{OCH}_{3}\right]^{+}, 5\right), 140(8), 123$ (100), 109 (30), 95 (20), 57 (10); HRMS (EI) calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{2}\left(\mathrm{M}-\mathrm{OCH}_{3}\right)$ 165.0916, found 165.0929 .

4-Butoxy-4-methoxy-1-(1,1,2,2,2-pentafluoroethyl)-2,5-cyclohexadienone (35). To a solution of $3.6 \mathrm{~g}(18.1 \mathrm{mmol})$ of pentafluoroethyl iodide in 10 mL of $\mathrm{Et}_{2} \mathrm{O}$ was added dropwise at $-78^{\circ} \mathrm{C} 10 \mathrm{~mL}(18.1$ $\mathrm{mmol})$ of $\mathrm{CH}_{3} \mathrm{Li} \cdot \mathrm{LiBr}\left(1.5 \mathrm{M}\right.$ solution in $\left.\mathrm{Et}_{2} \mathrm{O}\right)$. A solution of $34(580$ $\mathrm{mg}, 2.96 \mathrm{mmol}$) in 10 mL of $\mathrm{Et}_{2} \mathrm{O}$ was cannulated into the reaction mixture. The solution was slowly warmed to $-20^{\circ} \mathrm{C}$, quenched by addition of 5% aqueous NaHCO_{3} solution, diluted with EtOAc , washed with brine, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Chromatography on SiO_{2} (EtOAc/ hexanes, $1: 10$) gave $683 \mathrm{mg}(81 \%)$ of 35 as a yellowish oil: $R_{f}(\mathrm{EtOAc} /$ hexanes, $1: 10$) $=0.7 ; \mathrm{R}$ (neat) $3360,2984,2940,1341,1215,1181$, $1148,1086,1049,936,911 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 6.13(\mathrm{~d}, 2 \mathrm{H}, J=10.4$ Hz), $6.04(\mathrm{~d}, 2 \mathrm{H}, J=10.4 \mathrm{~Hz}), 3.83(\mathrm{bs}, 1 \mathrm{H}), 3.46(\mathrm{t}, 2 \mathrm{H}, J=6.5$ $\mathrm{Hz}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 1.55-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.23(\mathrm{~m}, 2 \mathrm{H}), 0.84(\mathrm{t}$, $3 \mathrm{H}, J=8.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 131.8,127.7,119.0(\mathrm{qt}, J=285.8,35.3$ $\mathrm{Hz}), 113.5(\mathrm{tq}, J=260.3,34.5 \mathrm{~Hz}), 92.3,68.9(\mathrm{t}, J=24.0 \mathrm{~Hz}), 62.1$, $49.8,32.0,19.2,13.6$; MS (EI) m / e (relative intensity) $316\left(\mathrm{M}^{+}, 2\right)$, $285\left(\left[\mathrm{M}-\mathrm{OCH}_{3}\right]^{+}, 14\right), 260(2), 243$ (100), 229 (25), 209 (2.5), 202 (2), 195 (2), 189 (1), 182 (2), 173 (2), 166 (3), 157 (5), 151 (1), 143 (4), 124 (50), 110 (25), 81 (10), 57 (20); HRMS (EI) calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~F}_{5} \mathrm{O}_{2}\left(\mathrm{M}-\mathrm{OCH}_{3}\right) 285.0914$, found 285.0923.
syn-4-Methoxy-1-methyl-4-(1,1,2,2,2-pentafluoroethyl)-2,5-cyclo-hexadien-1-ol (36α) and anti-4-Methoxy-1-methyl-4-(1,1,2,2,2-pen-tafluoroethyl)cyclohexadien-1-ol (36 $)$ from 32. To a solution of $32(21 \mathrm{mg}, 0.09 \mathrm{mmol})$ in 3 mL of dry THF was added dropwise at $-78{ }^{\circ} \mathrm{C} 72 \mu \mathrm{~L}$ of $\mathrm{CH}_{3} \mathrm{Li} \cdot \mathrm{LiBr}\left(1.5 \mathrm{M}\right.$ solution in $\left.\mathrm{Et}_{2} \mathrm{O}, 0.11 \mathrm{mmol}\right)$. After 30 min , the reaction mixture was quenched by addition of 5% aqueous NaHCO_{3} solution and extracted with EtOAc. The organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo to give 16 mg (72%) of a $1: 5$ mixture of $36 \alpha, \beta$ as a colorless oil. 36β : $R_{f}($ EtOAc/hexanes, $1: 4)=0.4$; IR (neat) $3310,1341,1179,1148,1075$, $926 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 6.36(\mathrm{~d}, 2 \mathrm{H}, J=10.3 \mathrm{~Hz}), 5.77(\mathrm{~d}, 2 \mathrm{H}, J=$ $10.3 \mathrm{~Hz}), 3.13(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR 142.1, $122.2,119.0$ $(\mathrm{qt}), 113.0(\mathrm{tq}), 74.7(\mathrm{t}, J=24.0 \mathrm{~Hz}), 64.9,51.3,27.2 ; \mathrm{MS}$ (EI) m / e (relative intensity) $258\left(\mathrm{M}^{+}, 3\right), 243\left(\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}, 50\right), 227(10), 207$ (0.3), 157 (10), 139 (30), 124 (100), 109 (20), 91 (10), 79 (10), 74 (10), 59 (20), 43 (25); HRMS (EI) calcd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~F}_{5} \mathrm{O}_{2}\left(\mathrm{M}-\mathrm{CH}_{3}\right)$ 243.0444 , found 243.0425 .
syn-4-Methoxy-1-methyl-4-(1,1,2,2,2-pentafluoroethyl)-2,5-cyclo-hexadien-1-ol (36α) and anti-4-Methoxy-1-methyl-4-(1,1,2,2,2-pen-tafluoroethyl)cyclohexadien-1-ol ($\mathbf{3 6 \beta}$) from 10. To a solution of $458 \mathrm{mg}(1.86 \mathrm{mmol})$ of pentafluoroethyl iodide in 10 mL of $\mathrm{Et}_{2} \mathrm{O}$ was added dropwise at $-78^{\circ} \mathrm{C} 1.2 \mathrm{~mL}(1.86 \mathrm{mmol})$ of $\mathrm{CH}_{3} \mathrm{Li} \cdot \mathrm{LiBr}(1.5 \mathrm{M}$ solution in $\mathrm{Et}_{2} \mathrm{O}$). A solution of $10(67 \mathrm{mg}, 0.37 \mathrm{mmol})$ in 5 mL of $\mathrm{Et}_{2} \mathrm{O}$ was cannulated into the reaction mixture. The solution was slowly warmed to $0^{\circ} \mathrm{C}$, quenched by addition of 5% aqueous NaHCO_{3} solution, and diluted with EtOAc. The organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, dissolved in 12 mL of THF, and treated at $0{ }^{\circ} \mathrm{C}$ with $74 \mathrm{mg}(1.86 \mathrm{mmol})$ of $60 \% \mathrm{NaH}$ and $264 \mathrm{mg}(1.86 \mathrm{mmol})$ of $\mathrm{CH}_{3} \mathrm{I}$. The reaction mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$ and partitioned between EtOAc and brine. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo to give a bright yellow oil. Unreacted 10 was removed by chromatography on SiO_{2} (EtOAc/hexanes, 1:10). A solution of the crude product in 5 mL of THF was treated at $0^{\circ} \mathrm{C}$ for 5 min with $0.4 \mathrm{~mL}(0.4 \mathrm{mmol})$ of TBAF (1 M solution in THF), diluted with EtOAc, and washed with brine. The organic layer was dried $\left(\mathrm{Na}_{2}{ }^{-}\right.$ SO_{4}) and chromatographed on SiO_{2} (EtOAc/hexanes, 1:10) to give 57 $\mathrm{mg}(61 \%)$ of a $3: 1$ mixture of $36 \alpha, \beta$. $36 \alpha: R_{f}$ (EtOAc/hexanes, $1: 4$) $=0.3$; R (neat) $3306,2988,1406,1341,1213,1179,1148,1123,1105$, $1075,999,926,774,673 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 6.34(\mathrm{~d}, 2 \mathrm{H}, J=10.3 \mathrm{~Hz})$, $5.73(\mathrm{~d}, 2 \mathrm{H}, J=10.3 \mathrm{~Hz}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ $141.8,121.6,119.0(\mathrm{qt}, J=322.5,36.0 \mathrm{~Hz}), 113.3(\mathrm{tq}, J=258.0$, 35.3 Hz), $74.9(\mathrm{t}, J=24.0 \mathrm{~Hz}$), $65.7,51.5,28.1 ; \mathrm{MS}(\mathrm{EI}) \mathrm{m} / e$ (relative intensity) $258\left(\mathrm{M}^{+}, 2\right), 243\left(\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}, 60\right), 227(10), 207(0.5)$, 157 (10), 139 (30), 124 (100), 109 (20), 79 (10), 74 (20), 59 (25), 45 (35); HRMS (EI) calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~F}_{5} \mathrm{O}_{2}$ 258.0679, found 258.0672.
syn-1-(Benzyloxy)-4-methoxy-1-methyl-4-(1,1,2,2,2-pentafluoro-ethyl)-2,5-cyclohexadiene (37α) and anti-1-(Benzyloxy)-4-methoxy-1-methyl-4-(1,1,2,2,2-pentafluoroethyl)cyclohexadiene (37 β). A solution of $23 \mathrm{mg}(0.09 \mathrm{mmol})$ of a $3: 1 \mathrm{mixture}$ of $36 \alpha, \beta$ in 7 mL of THF was treated at $0^{\circ} \mathrm{C}$ with $11 \mathrm{mg}(0.27 \mathrm{mmol})$ of $60 \% \mathrm{NaH}, 46 \mathrm{mg}$ (0.27 mmol) of benzyl bromide, and $4 \mathrm{mg}(0.01 \mathrm{mmol})$ of tetrabutylammonium iodide. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 5 h , diluted with hexanes, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Chromatography on SiO_{2} (EtOAc/hexanes, $1: 50$) gave 24 mg (76%) of a $3: 1$ mixture of $37 \alpha, \beta$ as a colorless oil. 37α : R_{f} (EtOAc/hexanes, $1: 10)=0.7 ; \operatorname{IR}$ (neat) $2938,1553,1501,1466,1451,1399,1339,1213$, $1175,1146,1088,1069,1026,1001,926,772,743,718,695,681$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.30-7.18(\mathrm{~m}, 5 \mathrm{H}), 6.29(\mathrm{~d}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz})$, $5.87(\mathrm{~d}, 2 \mathrm{H}, J=10.0 \mathrm{~Hz}), 4.28(\mathrm{~s}, 2 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (500 MHz) $\delta 141.6,138.6,128.5,127.6,124.3,119.3$ (qt, J $=283.8,36.4 \mathrm{~Hz}), 115.9(\mathrm{tq}, J=208.7,48.5 \mathrm{~Hz}), 75.0(\mathrm{t}, J=48.5$ Hz), 71.1, 67.1, 51.8, 27.7; MS (EI) m / e (relative intensity) 333 ([M $\left.\mathrm{CH}_{3}\right]^{+}, 1$), 257 (1), 241 ($\left.\mathrm{M}-\mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right]^{+}, 22$), 227 (2), 221 (2), 210 (22), 171 (4), 141 (20), 122 (40), 107 (20), 91 (100), 79 (15), 65 (10), 45 (10); HRMS (EI) calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~F}_{5} \mathrm{O}\left(\mathrm{M}-\mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$ 241.0651, found 241.0642 .

Acknowledgment. P. W. is an Eli Lilly Grantee, an Alfred P. Sloan Research Fellow (1994-1995), and a recipient of an American Cyanamid Faculty Award. Additional research support was provided by the Upjohn Co. We would like to thank Prof. Craig Wilcox for stimulating discussions and Dr. Steve Geib for the X-ray structure analysis of $\mathbf{2 6 \alpha}$.

Supplementary Material Available: ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for compounds 5-10, 14-32, and 34-37 (71 pages). This material is contained in many libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

[^0]: ${ }^{8}$ Abstract published in Advance ACS Abstracts, November 15, 1994.
 (1) Cram, D. J.; Elhafez, F. A. A. J. Am. Chem. Soc. 1952, 74, 5828.
 (2) (a) Dauben, W. G.; Fonken, G. J.; Noyce, D. S. J. Am. Chem. Soc. 1956, 78, 2579. (b) Cornforth, J. W.: Cornforth, R. H.; Mathew, K. K. J. Chem. Soc. 1959, 112. (c) Richer, J.-C. J. Org. Chem. 1965. 30, 324 . (d) Karabatsos, G. J. J. Am. Chem. Soc. 1967, 89, 1367. (e) Cherest, M.; Felkin, H.; Prudent, N. Tetrahedron Lett. 1968, 2199. (f) Klein, J. Tetrahedron Lett. 1973, 29, 4307. (g) Ahn, N. T.; Eisenstein, O. Nouv. J. Chim. 1977, 1, 61. (h) Eisenstein, O.; Klein, J.; Lefour, J. M. Tetrahedron 1979, 35, 225. (i) Burgess, E. M.; Liotta, C. L. J. Org. Chem. 1981, 46. 1703. (j) Giddings, M. R.; Hudec, J. Can. J. Chem. 1981, 59, 459. (k) Cieplak, A. S. J. Am. Chem. Soc. 1981, 103, 4540. (1) Huang, X. L.; Dannenberg, J. J.; Duran, M.; Bertran, J. J. Am. Chem. Soc. 1993, 115, 4024.
 (3) (a) Bürgi, H. B.; Dunitz, J. D.; Shefter, E. J. Am. Chem. Soc. 1973, 95, 5065. (b) Bürgi, H. B.; Lehn, J. M.; Wipff, G. J. Am. Chem. Soc. 1974, 96, 1956. (c) Liotta, C. L.; Burgess, E. M.; Eberhardt, W. H. J. Am. Chem. Soc. 1984, 106, 4849. (d) Houk, K. N.; Paddon-Row, M. N.; Rondan, N. G.; Wu, Y. D.; Brown, F. K.; Spellmeyer, D. C.; Metz, J. T.; Li, Y.; Loncharich, R. J. Science 1986, 231, 1108. (e) Cheung, C. K.; Tseng, L. T.; Lin, M.-H.; Srivastava, S.; le Noble, W. J. J. Am. Chem. Soc. 1986, 108, 1598. (f) Wu, Y.-D.; Houk, K. N. J. Am. Chem. Soc. 1987, 109, 908. (g) Lodge, E. P.; Heathcock, C. H. J. Am. Chem. Soc. 1987, 109, 3353. (h) Wu, Y.-D.; Houk, K. N.; Trost, B. M. J. Am. Chem. Soc. 1987, 109, 5560. (i) Srivastava, S.; le Noble, W. J. J. Am. Chem. Soc. 1987, 109, 5874. (j) Mukherjee, D.; Wu, Y.-D.; Fronczek, F. R.; Houk, K. N. J. Am. Chem. Soc. 1988, 110 , 3328. (k) Lin, M.-H.; Cheung. C. K.; le Noble, W. J. J. Am. Chem. Soc. 1988, 110, 6562. (1) Chung, W.-S.; Turro, N. J.; Srivastava, S.; Li, H.; le Noble, W. J. J. Am. Chem. Soc. 1988. 110, 7882. (m) Lin, M.-H.; Silver, J. E.; le Noble, W. J. J. Org. Chem. 1988. 53, 5155. (n) Cieplak, A. S.; Tait, B. D.; Johnson, C. R. J. Am. Chem. Soc. 1989, I11, 8447. (o) Halterman, R. L.; McEvoy, M. A. J. Am. Chem. Soc. 1990, 112, 6690. (p) Wu, Y.-D.; Houk, K. N.; Florez, J.; Trost, B. M. J. Org. Chem. 1991, 56, 3656. (q) Hahn, J. M.; le Noble, W. J. J. Am. Chem. Soc. 1992, 114, 1916. (r) Mehta, G.; Khan, F. A. Tetrahedron Lett. 1992, 33, 3065. (s) Coxon, J. M.; McDonald, D. Q. Tetrahedron 1992, 48, 3353. (t) Fraser, R. R.; Kong, F.; Stanciulescu, M.; Wu, Y.-D.; Houk, K. N. J. Org. Chem. 1993, 58, 4431. (u) Huang, X. L.; Dannenberg, J. J. J. Am. Chem. Soc. 1993, 115, 6017. (v) Song, I. H.; le Noble, W. J. J. Org. Chem. 1994, 59, 58.

[^1]: (4) (a) Cram, D. J.; Wilson, D. R. J. Am. Chem. Soc. 1963, 85, 1245. (b) Wong, S. S.; Paddon-Row, M. N. J. Chem. Soc., Chem. Commun. 1990, 456. (c) Wong, S. S.; Paddon-Row, M. N. J. Chem. Soc., Chem. Commun. 1991, 327. (d) Wong, S. S.; Paddon-Row, M. N. Aust. J. Chem. 1991. 44, 765. (e) Wu, Y.-D.; Tucker, J. A.; Houk, K. N. J. Am. Chem. Soc. 1991, 113, 5018. (f) Frenking, G.; Köhler, K. F.; Reetz, M. T. Tetrahedron 1991, 47, 9005. (g) Paddon-Row, M. N.; Wu, Y.-D.; Houk, K. N. J. Am. Chem. Soc. 1992, I14, 10638. (h) Pudzianowski, A. T.; Barrish, J. C.; Spergel, S. H. Tetrahedron Lett. 1992, 33, 293. (i) Ganguly, B.; Chandrasekhar, J.; Khan, F. A.; Mehta, G. J. Org. Chem. 1993, 58, 1734. (j) Wu, Y.-D.; Li, Y.; Na, J.; Houk, K. N. J. Org. Chem. 1993, 58, 4625.
 (5) For reviews, see: (a) Boone, J. R.; Ashby, E. C. Top. Stereochem. 1979, 11, 53. (b) Houk, K. N.; Wu, Y.-D. In Stereochemistry of Organic and Bioorganic Transformations; Bartmann, W., Sharpless, K. B., Eds.; VCH, Weinheim, Germany, 1987; pp 247-260. (c) Li, H.; le Noble, W. J. Recl. Trav. Chim. Pays-Bas 1992, 111, 199. (d) Franck, R. W. In Conformational Studies of Six-Membered Ring Carbocycles; Juaristi, E., Ed.; VCH, Weinheim, Germany, in press. We thank Prof. Franck for a preprint of his article.

[^2]: (6) Heathcock, C. H. In Comprehensive Carbanion Chemistry; Buncel, E., Durst, T., Eds.; Elsevier, Amsterdam, 1984; pp 177-237.
 (7) Frenking, G.; Köhler, K. F.; Reetz, M. T. Angew. Chem., Int. Ed. Engl. 1991, 30, 1146.
 (8) (a) Wipf, P.; Kim. Y.; Fritch, P. C. J. Org. Chem. 1993, 58, 7195. (b) Wipf, P.; Kim, Y. J. Org. Chem. 1993, 58, 1649.

[^3]: (12) Henbest, H. B.; Wilson, R. A. L. J. Chem. Soc. 1957, 1958.
 (13) Kishi, Y.; Aratani, M.; Tanino, H.; Fukuyama, T.; Goto, T.; Inoue, S.; Sugiura, S.; Kakoi, H. J. Chem. Soc., Chem. Commun. 1972, 64.

[^4]: (14) γ-Hydroxy enones such as 9 have been used by Liotta and Maryanoff and others in the study of ligand-assisted nucleophilic addition reactions: Solomon, M.; Jamison, W. C. L.; McCormick, M.; Liotta, D.; Cherry, D. A.; Mills, J. E.; Shah, R. D.; Rodgers, J. D.; Maryanoff, C. A. J. Am. Chem. Soc. 1988, 110, 3702 and references cited therein.
 (15) Swiss, K. A.; Hinkley, W.; Maryanoff, C. A.; Liotta, D. C. Synlett 1992, 127.

[^5]: (16) Fischer, A.; Henderson, G. N. Tetrahedron Lett. 1980, 21, 701.
 (17) See also: Corey, E. J.; Boaz, N. W. Tetrahedron Lett. 1985, 26 , 6015.

[^6]: (18) The proposed hypothetical "vinylogous Cieplak" effect would be equivalent to an allylic inversion of the "normal Cieplak" effect and could thus in principle serve to explain α-attack.

[^7]: (19) (a) Gassman, P. G.; O'Reilly, N. J. Tetrahedron Lett. 1985, 26, 5241. (b) Gassman, P. G.; O’Reilly, N. J. J. Org. Chem. 1987, 52, 2481.
 (20) (a) Warshel, A. Acc. Chem. Res. 1981, 14, 284. (b) Smith, P. J.; Kim, E. I.; Wilcox, C. S. Angew. Chem., Int. Ed. Engl. 1993, 32, 1648.
 (21) Weidner, R. T.; Sells, R. L. In Elementary Classical Physics; Allyn and Bacon: Boston, MA, 1965; Volume 2, pp 631-650.

[^8]: (22) For correlations of $\log k_{\text {ax }} / k_{\text {eq }}$ vs Hammett constants σ_{I} in cycloketone additions, see refs $3 \mathrm{e}, \mathrm{n}$.
 (23) Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P. J. Am. Chem. Soc. 1985, 107, 3902. AM1 has been shown to reproduce dipole moments of organic molecules with good accuracy: Stewart, J. J. P. In Reviews in Computational Chemistry; Lipkowitz, K. B., Boyd, D. B., Eds.; VCH: Weinheim, Germany, 1991; pp 45-81.
 (24) Hehre, W. J.; et al. SPARTAN, Version 3.1.2, Wavefunction, Inc., Irvine, CA.
 (25) The dipole moment orthogonal to the dienone plane $\left(\mu_{\perp}\right)$ of the anticonformer of 5 was used; μ_{\perp} of the energetically more stable syn-conformer of 5 (methyl ether centered over the dienone ring) was zero. It is assumed that a Curtin-Hammett situation exists and the anti-isomer reacts faster due to electrostatic enhancement of the rate of addition of the polar nucleophile.

[^9]: (26) AM1 (SPARTAN) electrostatic potentials of dienones 1, 3, 5-10, and 32, correlated qualitatively but not quantitatively with the observed facial selectivites.
 (27) Our correlation of ground state dipole moments with selectivities does not challenge the general validity of specific transition state analyses by semiempirical or $a b$ initio methods. In fact, the magnitude of the dipole moment and the minimization of dipolar interactions can easily be reflected in the calculated $\Delta H_{f}{ }^{\circ}$: Jones, D. K.; Liotta, D. C.; Choi, W.-B.; Volante, R. P.; Reider, P. J.; Shinkai, I.; Churchill, H. R. O.; Lynch, J. E. J. Org. Chem. 1994, 59, 3749.

[^10]: (28) (a) Still, W. C. J. Am. Chem. Soc. 1978, 100. 1481. (b) Johnson, C R.; Medich, J. R. J. Org. Chem. 1988, 53, 4131

